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Recoil and momentum diffusion of an atom close
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Abstract. We derive the quantum-mechanical master equation (generalized optical Bloch equation) for an
atom in the vicinity of a flat dielectric surface. This equation gives access to the semiclassical radiation
pressure force and the atomic momentum diffusion tensor, that are expressed in terms of the vacuum field
correlation function (electromagnetic field susceptibility). It is demonstrated that the atomic center-of-
mass motion provides a nonlocal probe of the electromagnetic vacuum fluctuations. We show in particular
that in a circularly polarized evanescent wave, the radiation pressure force experienced by the atoms is not
colinear with the evanescent wave’s propagation vector. In a linearly polarized evanescent wave, the recoil
per fluorescence cycle leads to a net magnetization for a Jg = 1/2 ground state atom.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 03.75.Be Atom and neutron optics – 42.50.Vk
Mechanical effects of light on atoms, molecules, electrons, and ions

1 Introduction

When an atom is absorbing or emitting light, its center-
of-mass is subject to photon recoil. This phenomenon, al-
ready pointed out by Einstein in the early years of the
century [1], is the core ingredient of the atomic motion
manipulation techniques that have attracted much atten-
tion during the last 20 years [2–5]. However, it also em-
bodies its own limit, as it provides crucial limiting factors
to the performances of these techniques. For example, the
minimum attainable temperatures in laser cooling are gen-
erally limited by the random fluctuations in the momenta
exchanged between photons and atoms, that give rise to
atomic momentum diffusion [1–4]; also in the most promis-
ing field of atom optics [6], spontaneous emission repre-
sents a lethal threat to the coherence of the de Broglie
waves because the atomic wave vector acquires an inde-
terminacy due to the random photon recoil [7].

In this paper, we study the recoil effects due to spon-
taneous emission in the vicinity of a vacuum–dielectric
interface for an atom being reflected from an evanescent
wave. This atom-optical device is one of the most stud-
ied realizations of a coherent mirror for atomic de Broglie
waves [8–12]. Being based upon the interaction between an
atom and an evanescent laser wave propagating along the
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surface of a dielectric prism, it already allowed detailed
experimental investigations of fluorescence rates [13,14],
single optical pumping cycles [15,16] and ground-state en-
ergy shifts [17] at distances of order λ– = c/ωA from the
interface (ωA is the atomic transition frequency). Sponta-
neous emission in the evanescent wave is also used in re-
flection cooling techniques [15,16,18] that have been pro-
posed for radiative atom traps in the vicinity of surfaces
[19–25]. From these experiments it has become apparent
that a proper description of the fluorescence rates and the
energy levels has to take into account the distortion of
the electromagnetic field due to the presence of the di-
electric. A precise theory of the atom–light interaction in
the evanescent wave mirror hence touches upon the field
of cavity QED [26] and might even provide a model sys-
tem for one of this field’s paradigms: that the radiative
properties of an atom are determined by the local prop-
erties of the electromagnetic field at the atom’s position.
In fact, as far as the “internal” atomic dynamics (spon-
taneous emission rates and frequency shifts) is concerned,
this problem has already been studied intensively, start-
ing from the work of Drexhage [27] and Chance et al. [28]
and covering a variety of geometries and materials (dielec-
tric or metallic) [29–40]. In a recent paper, Courtois et al.
[41] calculated the cavity QED modifications to the opti-
cal Bloch equations that govern the relaxation processes
of a multilevel atom close to the vacuum–dielectric inter-
face. This study showed that the relaxation due to spon-
taneous emission is determined by the radiative damping
rates of classical dipoles located near the interface. The
paper was limited, however, to atoms at rest: only the
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internal dynamics was treated, whereas the “external dy-
namics” (recoil of the atomic center-of-mass) had still to
be included. The present paper intends to fill this gap: we
derive the so-called generalized optical Bloch equations
that describe both internal and external dynamics of an
atom in the vicinity of the vacuum–dielectric interface. We
actually start from a more general perspective and deter-
mine, for a generic cavity geometry, the master equation
for the atomic density matrix, including the center-of-mass
degrees of freedom. The modifications of the electromag-
netic vacuum field appear in this equation through the
field correlation function, taken at two spatially separated
positions. It hence turns out that the atomic external de-
grees of freedom constitute a nonlocal probe of the spa-
tial correlations of the electromagnetic cavity field. We
then follow the general procedure outlined by Dalibard
and Cohen-Tannoudji [5] and use the Wigner representa-
tion to express the spatial dependence of the atomic den-
sity matrix in terms of a phase-space quasi-distribution. In
the semiclassical limit, the atomic Wigner function evolves
according to a Fokker–Planck equation where appear the
radiation pressure force and the momentum diffusion, and
these quantities involve spatial derivatives of the field cor-
relation function. In free space, this is simply a reformu-
lation of the random momentum exchanges between the
atom, the laser field, and the vacuum field [42]. In a cavity-
type geometry, on the other hand, photons do not rapidly
escape to infinity, and the spatial structure of the field
modes becomes important for the atomic recoil.

We illustrate the capabilities of the Bloch–Fokker–
Planck equation derived in this paper by focusing on spon-
taneous emission in the evanescent wave mirror. In par-
ticular, some unusual properties of the radiation pressure
force above the dielectric interface are displayed. As a first
example, we show that it differs from the naive estimate
based upon the phase gradient of the evanescent driving
field and the spontaneous emission rate. More explicitly, if
the evanescent wave is circularly polarized, the radiation
pressure force points into a different direction than the
(real part of the) evanescent field’s wave vector. This is
due to the fact that the vacuum–dielectric interface par-
tially reflects the electromagnetic field and hence modifies
the spatial structure of the vacuum fluctuations. From the
viewpoint of radiation reaction, the correction to the ra-
diation pressure corresponds to the force exerted by the
atom’s dipole field that is backreflected from the inter-
face. As a second example, we study the optical pumping
of a Jg = 1/2 atom in the vicinity of the dielectric. The
reduced symmetry of the electromagnetic vacuum field im-
plies that the average recoil per optical pumping cycle dif-
fers between the two Zeeman sublevels, even in a linearly
polarized evanescent field. As a consequence, an initially
unpolarized atomic ensemble splits into two spin compo-
nents with different average momentum after a pumping
cycle. For some velocity classes the sublevel populations
then have become imbalanced, and the atomic ensemble
shows what may be called a “recoil-induced magnetiza-
tion” [43].

The theory outlined in this paper thus improves previ-
ous “heuristic” approaches to atomic recoil in evanescent
waves [13,44,45], that assume the atomic fluorescence to
be distributed according to the free-space dipole radiation
pattern. Our results are also relevant for radiative atom
traps in the vicinity of material surfaces [19–25], where
momentum diffusion due to spontaneous emission may be
one of the limiting factors for the temperature. While cur-
rent atomic mirror experiments are typically limited to the
transient regime, such traps would allow one to study the
radiation pressure force in evanescent waves in the long-
time limit (steady state). From a more general perspec-
tive, the framework presented here may also be used to
predict the center-of-mass motion of cold atoms in a high-
finesse optical cavity with its electromagnetic field modes
being confined both in real and frequency space. It is an
interesting result for the domain of cavity QED that the
external motion of atoms in a cavity provides a nonlocal
probe of the cavity field correlation function, in opposi-
tion to internal radiative properties that are determined
by the field correlations at the same point. The examples
we develop demonstrate that this direction of cavity QED
may be investigated with current experiments.

The paper is organized as follows: in Section 2, we
present the generalized optical Bloch equations including a
nontrivial correlation function for the electromagnetic vac-
uum field. We focus on atoms driven by a monochromatic
field in the low-saturation, large-detuning limit. Eliminat-
ing adiabatically the excited state, the Bloch equations
reduce to the optical pumping equation involving only
the ground state density matrix. Passing to the Wigner
representation, these equations take the form of a Fokker–
Planck equation in the semiclassical limit. We display gen-
eral expressions for the radiation pressure force and the
momentum diffusion tensor that apply to any Zeeman de-
generacy. The conditions of validity for our approach are
summarized. In Section 3, the example of the evanescent
wave mirror allows us to illustrate the general theory. We
discuss the reduced symmetry of the electromagnetic field
correlations in the vacuum above a flat dielectric surface
and recover, in the absence of recoil, the well-known flu-
orescence rates for this geometry. Specializing to a scalar
ground state, i.e., a Jg = 0 → Je = 1 atom, we study
the influence of the evanescent wave’s polarization on the
radiation pressure force and the momentum diffusion ten-
sor. We then consider a Jg = 1/2 ground state atom and
examine optical pumping in the evanescent wave. The ap-
pendixes contain several technical results that are used in
the text.

2 Generalized optical Bloch equations

The internal and external dynamics of an atom interact-
ing with a laser field are conveniently characterized by a
master equation for its density matrix (generalized opti-
cal Bloch equation “G.O.B.E.”). This section is devoted
to the derivation of such an equation in the particular case
of a multilevel atom located close to the interface between
vacuum and a dielectric medium.
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2.1 General

To begin, we identify the general features of the G.O.B.E.
at an interface. In free space, the master equation de-
scribing the interaction of a single multilevel atom with
a monochromatic laser field is well-known [46,47]. Basi-
cally, its derivation proceeds in two steps. In the first step,
one considers the evolution equation for the total density
matrix of the system constituted by the atom and the
electromagnetic field. In the framework of nonrelativis-
tic quantum electrodynamics and in the electric dipole
approximation, this equation relies upon the atom-field
Hamiltonian

H = H0 +HR + VAL + VAR. (1)

The first term on the right-hand side of equation (1) is the
atomic Hamiltonian accounting for the internal energy of
the bare atom and for its kinetic energy:

H0 =
P2

2M
+
~ω0

2
(Pe − Pg) (2)

where P is the atomic momentum operator, M is the
atomic mass, and Pg and Pe are the projection operators
on the ground and excited states, respectively; the second
term is the free Hamiltonian of the Coulomb-gauge quan-
tized electromagnetic field; VAL is the time-dependent,
purely atomic Hamiltonian

VAL = −D · EL (R, t) (3)

that describes the interaction of the atomic dipole D with
the laser field assumed to be in a coherent state and there-
fore described by a classical function EL (r, t); and the last
term,

VAR = −D ·E(R) (4)

represents the coupling between the atom and the reser-
voir associated with the vacuum quantum field E(R). We
note that in equation (1), both fields EL (R, t) and E(R)
are evaluated at the location of the atom (R: atomic
center-of-mass position operator). In the second step, the
master equation for the atomic density matrix ρ is ob-
tained by applying second order perturbation theory to
the atom-reservoir interaction, and by tracing away the
degrees of freedom associated with the reservoir. This
yields a dynamical evolution equation where the influence
of the reservoir is manifest through two contributions. The
first, associated with an effective Hamiltonian, describes
the energy shifts undergone by the atomic levels as a re-
sult of their coupling to the vacuum field (Lamb-shifts).
These shifts are traditionally assimilated in the definition
of H0, yielding the actual atomic Hamiltonian HA,∞. The
second contribution, ρ̇relax,∞, represents the dissipation
of the atomic system due to its coupling with the reser-
voir (spontaneous emission). Finally, the free-space time
evolution of the atomic density matrix takes the form

ρ̇ = L∞ ρ (5)

L∞ ρ =
1

i~
[HA,∞ + VAL, ρ] + ρ̇relax,∞ (6)

where we have introduced the free-space Liouville opera-
tor L∞ .

We now consider an atom located in the vicinity of a
vacuum-dielectric interface. What are the modifications
of the master equation (5) induced by the lower-lying
dielectric medium? First, because of the new boundary
conditions, the modes of EL (r, t) and of the quantized
electromagnetic vacuum field are altered and may become
evanescent. It is clear that this does not affect the op-
erators H0, HR, and VAL which keep the same form as
in the free-space case. In contrast, the structure of the
reservoir becomes modified. The contributions of VAR to
the atom dynamics (energy level shifts and spontaneous
emission rates) are therefore expected to be different from
the free-space situation. Moreover, as a result of the in-
stantaneous Coulomb interaction between the atomic and
dielectric charges, one expects a supplementary electro-
static contribution Hes to the energy level shifts. Hes cor-
responds to the London-Van der Waals interaction of the
instantaneous atomic dipole with its image in the dielec-
tric medium (higher multipoles can be neglected provided
the atomic radius is much less than the distance between
the atom and the dielectric surface). Finally, denoting by
∆HA and ρ̇relax,int the modifications of the Hamiltonian
and dissipative parts of the atomic density matrix evolu-
tion due to the interface, one obtains the general form of
the G.O.B.E. in the presence of the dielectric medium

ρ̇ = L∞ ρ+ Lint ρ (7)

where

Lint ρ =
1

i~
[∆HA, ρ] + ρ̇relax,int (8)

entirely describes the influence of the interface on the
atomic dynamics. In particular, Lint ρ tends toward zero
when the atom is far from the dielectric surface. The
expression of the atomic level shifts close to a vacuum-
dielectric interface have been presented in reference [41]
and will not be discussed any further. We will therefore
only focus on the dissipative contribution to equation (8).

2.2 Master equation treatment of spontaneous
emission

We consider the relaxation processes undergone by the
atom as a result of its coupling with the vacuum quantum
field. As is well-known, these processes are conveniently
described by a master equation for the atomic density
matrix. In this section, we derive such an equation tak-
ing into account the presence of the lower-lying dielectric
medium.

2.2.1 Atom-quantum field coupling

As stated above, the coupling between the atom and the
quantized electromagnetic field (which is responsible for
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spontaneous emission) is described by the Hamiltonian
VAR = −D ·E(R). The atomic dipole operator D changes
sign under parity, and therefore has only zero matrix el-
ements inside the Zeeman degeneracy subspaces of both
the ground and excited states. Furthermore, because |g〉
and |e〉 have well-defined angular momenta, it is possible
following the Wigner-Eckart theorem to write D in terms
of a dimensionless, reduced dipole operator d

D = D d (9)

whose matrix elements contain the Clebsch-Gordan coef-
ficients associated with the addition of the angular mo-
menta 1 + Jg → Je. In equation (9), D is a real num-
ber characterizing the electric dipole moment amplitude
of the atomic transition. We further decompose the re-
duced dipole operator as

d =Pe dPg + Pg dPe = d+ + d− (10)

and expand d+ and d− = (d+)
†

onto the standard basis
{u±1 = ∓ (ex ± iey) /

√
2,u0 = ez} (where ex,y,z are the

unitary vectors associated with the cartesian coordinate
system)

d+
q = d+ · uq =

(
d−q
)†
. (11)

The matrix elements of d+
q are then given by the simple

expression

〈JeMe|d
+
q |JgMg〉 = 〈Jg 1Mg q|JeMe〉 (12)

where 〈Jg 1Mg q|JeMe〉 is the Clebsch-Gordan coef-
ficient connecting the Zeeman sublevels |JgMg〉 and
|JeMe = Mg + q〉. Finally, using the rotating-wave ap-
proximation, the interaction Hamiltonian VAR takes the
more explicit form

VAR = −D
1∑

q=−1

(
d+
q E

+
q + d−q E

−
q

)
(13)

where

E+ =
1∑

q=−1

E+
q uq =

(
E−
)†

(14)

is the positive-frequency component of the electric field
operator. The counter-rotating terms neglected in equa-
tion (13) only contribute to the Hamiltonians HA,∞,
∆HA, but not to the relaxation part of the master equa-
tion, cf. Appendix A.

2.2.2 Relaxation equation for the atomic density matrix

The total contribution ρ̇relax = ρ̇relax,∞ + ρ̇relax,int of
spontaneous emission to the time evolution of the atomic
density matrix can be readily derived from the standard
procedure [29,46–48] outlined in Appendix A, where it is

shown that in spite of the quantization of the center-of-
mass motion, ρ̇relax is of the familiar form, being a sum
of two terms

〈r1| ρ̇relax |r2〉 = −
Γ∞

2
〈r1|

{
Ci,j(R,R) d+

i d
−
j , ρ

}
|r2〉

+Γ∞C
i,j(r2, r1) d−j 〈r1| ρ |r2〉 d

+
i (15)

where {A,B} = AB + BA denotes the anti-commutator
between operators A and B,

Γ∞ =
D2ω3

0

3πε0 ~ c3
(16)

is the natural linewidth of the excited state in free space,
and where a sum is to be taken over the i, j = x, y, z
indices. The first line of equation (15) describes the re-
laxation of the populations and Zeeman coherences of
the excited state and of the optical coherences due to
spontaneous emission. It involves the dimensionless ten-
sor Ci,j(r1, r2), proportional to the Fourier transform of
the electromagnetic vacuum field correlation function at
the atomic transition frequency ω0

Γ∞C
i,j(r1, r2) =

D2

~2

∞∫
−∞

dτ eiω0τ 〈0|E+
i (r1, τ)E−j (r2, 0)|0〉

(17)

where |0〉 denotes the vacuum state of the field. The sec-
ond line in equation (15) describes the feeding of the
ground-state Zeeman sublevels by spontaneous emission,
yielding the expected population conservation relation
Tr (ρ̇relax) = 0.

It is clearly apparent in equation (15) that the effect
of the dielectric medium on the atomic relaxation is en-
tirely described by the correlation tensor Ci,j(r1, r2) pre-
viously derived by Carnaglia and Mandel [49] (a useful
representation of Ci,j(r1, r2) is given in Append. C). Fi-
nally, we note that in the case where the atom is infinitely
far from the vacuum-dielectric interface, the correlation
tensor Ci,j(r1, r2) reduces to its free-space value [50], and
equation (15) transforms into its well-known expression:

〈r1|ρ̇relax,∞|r2〉 = −
Γ∞

2
〈r1| {Pe , ρ} |r2〉

+ Γ∞

∫
d2n

8π/3

∑
ε⊥n

(
d− · ε∗

)
e−ik·r1

× 〈r1|ρ|r2〉e
ik·r2

(
d+ · ε

)
(18)

where n is a unit vector and k is defined by k = (ω0/c)n.

2.3 Evolution of the ground state density matrix
in the Wigner representation

In this section, the G.O.B.E. (7) is transformed into a
Fokker–Planck-type equation for the phase-space distri-
bution function of the atomic ground state. First, we elim-
inate adiabatically the optical coherences ρeg = Pe ρPg,
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ρge = Pg ρPe and the excited state density matrix ρee =
Pe ρPe by expressing them in terms of the ground-state
density matrix ρgg = Pg ρPg ≡ σ. This approximation,
which holds in the limit of large laser frequency detun-
ings from resonance and low saturation of the atomic
transition, presents the advantage of reducing the atomic
dynamics to a single Zeeman manifold (optical pump-
ing equation). In a second step, we Wigner-transform the
ground-state density operator σ. In the new representa-
tion, σ is represented by a (2Jg + 1) × (2Jg + 1) matrix
W (r,p, t), particularly well suited to the investigation of
the semiclassical limit of the atomic motion [3,5].

2.3.1 Adiabatic elimination of the excited state

In laser cooling or atom optics experiments, it is custom-
ary to operate in conditions of large laser frequency de-
tuning from resonance and low saturation of the atomic
transition. These conditions allow one to perform the adi-
abatic elimination of both the optical coherences ρeg, ρge
and the excited state density matrix ρee. As shown in Ap-
pendix B, this elimination amounts to the following sub-
stitutions. First, the dipole operators d± are replaced by

d− 7→ b−(R) = d−
[
d+ · ξ(R)

]
(19)

EL(r) = E0 ξ(r) (20)

with b±(R) being hermitian conjugates. The non-
normalized, dimensionless vector ξ(r) specifies the laser
spatial profile and polarization, while E0 gives the order
of magnitude of the electric field amplitude.

The second replacement involves the caracteristic
timescale of the ground-state density matrix elements: the
spontaneous emission rate Γ∞ is replaced by the typical
photon scattering rate Γ ′∞

Γ∞ 7→ Γ ′∞ = Γ∞
s0

2
(21)

where

s0 = 2

(
DE0

~∆

)2

� 1 (22)

is the saturation parameter in the large detuning limit
|∆ = ωL − ω0| � Γ∞.

Finally, using the usual rotating-wave approximation
for VAL and by neglecting the influence of the atomic ve-
locity on laser frequency detuning (Doppler effect), the
G.O.B.E. (7) yields the optical pumping equation (see Ap-
pend. B):

〈r1|σ̇|r2〉 =
1

i~
〈r1|

[
P2

2M
+Heff (R), σ

]
|r2〉

−
Γ ′∞
2
〈r1| {G(R), σ} |r2〉

+ Γ ′∞C
i,j(r2, r1)b−j (r1)〈r1|σ|r2〉b

+
i (r2) (23)

where

Heff (R) = Pg∆HA(R)Pg

+ ~∆′
(
d− · ξ∗(R)

) (
d+ · ξ(R)

)
(24)

is the effective Hamiltonian accounting for the dielectric-
induced energy level shifts of the ground state (first term
on the right-hand side) and the ground-state light shifts
(last term), the order of magnitude of which is

~∆′ = ~∆
s0

2
· (25)

We also introduced in (23) the ground-state operator

G(r) = Ci,j(r, r)b+i (r)b−j (r). (26)

Besides, to first order in Γ∞/∆, the connection between σ
and the optical coherences and excited-state parts of the
density matrix can be readily expressed in the following
form (see Append. B):

〈r1|ρeg |r2〉 = 〈r2|ρge|r1〉
†

= −
DE0

~∆

(
δi,j − i

Γ∞

2∆
Ci,j(r1, r1)

)
× d+

i b
−
j (r1) 〈r1|σ|r2〉 e

−iωLt (27)

〈r1|ρee|r2〉 =
s0

2

(
d+ · ξ(r1)

)
〈r1|σ|r2〉

(
d− · ξ∗(r2)

)
(28)

where δi,j is the Kronecker symbol. The validity condi-
tions of the expressions given in this section are detailed
in Section 2.3.3.

2.3.2 Wigner representation of the ground state
density matrix

General

The Wigner representation of the density matrix provides
a particularly convenient framework for the intuitive un-
derstanding of atomic motion in laser light. This is because
beside its intrinsic quasi-probability distribution charac-
ter, which often enables to map classical pictures onto
phenomena of quantum nature such as the atomic recoil
induced by absorption or emission of photons, the Wigner
representation is the best suited for taking advantage of
the general characteristics of laser-cooled atomic samples
to exhibit momentum widths ∆p significantly larger than
the photon momentum ~k, that characterizes the elemen-
tary step of the momentum random walk experienced by
the atom as a result from its momentum exchanges with
the laser field.

More quantitatively, the time evolution of the Wigner
representation W (r,p, t) of the ground state atomic den-
sity matrix

W (r,p, t) =
1

(2π~)3

∫
d3s σ(r; s) exp (−ip · s/~) (29)
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∂W

∂t
(r,p, t) = −

p

M
· ∇rW (r,p, t) +

∫
d3s

(2π~)3
e−ip.s/~

(
1

i~
[
Heff (r + 1

2
s)σ(r; s)− σ(r; s)Heff(r− 1

2
s)
]

−
Γ ′∞
2

{
G(r + 1

2s)σ(r; s) + σ(r; s)G(r− 1
2s)
}

+ Γ ′∞C
i,j(r; s)b−j (r + 1

2s)σ(r; s)b+i (r− 1
2s)

)
(31)

σ(r; s) ≡
〈
r + 1

2s|σ|r− 1
2s
〉

(30)

can be deduced from the optical pumping equation (23).
One thus finds after a straightforward calculation:

See equation (31) above

where

Ci,j(r; s) ≡ Ci,j
(
r− 1

2s, r + 1
2s
)
. (32)

Because the different quantities inside the integral ex-
hibit an s dependence, equation (31) clearly connects
∂tW (r,p, t) to some others W (r,p + δp, t), which is rem-
iniscent from the recoil of the atom during photon ab-
sorption or emission processes, hence |δp| ≈ ~k. Because
~k/∆p � 1, equation (31) can be accurately evaluated
by expanding W (r,p + δp, t) up to second order in δp
[5]. A more direct way of implementing this procedure
is to note that ~k/∆p � 1 implies that the coherence
length of the atomic ensemble, ~/∆p, is small compared
to the optical wavelength λ = 2π/k. This implies that
the width in s of the external coherence function σ(r; s) is
small compared to the scale of variation of the quantities
Ci,j(r− 1

2s, r+ 1
2s) and b±(r± 1

2s), which is of the order of
λ. It is therefore possible to expand directly the integral
kernel of equation (31) up to second order in ks before
evaluating the integral. We now discuss more quantita-
tively this procedure in order to identify the influence of
the vacuum-dielectric interface on the atomic dynamics.

Zeroth order: internal atomic dynamics

The lowest (zeroth) order in the expansion of the differ-
ent quantities in the integration kernel of equation (31)
amounts to considering the atoms as point-like particles,
i.e., to treating the atomic translational degrees of free-
dom classically. It is therefore not surprising to end with
the previously-established optical pumping equation [41]
for a point atom having a constant velocity p/M which
yields, after adiabatic elimination of the excited state and
optical coherences:

O[(ks)0] :
∂W

∂t

∣∣∣∣
0

= −
p

M
· ∇rW

+
1

i~
[Heff (r), W ] + Ẇrelax

∣∣∣
0
(33)

where the effective Hamiltonian Heff only impacts on
the evolution of the ground state Zeeman coherences (the
space dependence of Heff has no effect on the atomic mo-
tion to zeroth order in ks ) and where

Ẇrelax

∣∣∣
0

= −
Γ ′∞
2
Ci,j(r; 0){b+i (r) b−j (r), W}

+Γ ′∞C
i,j(r; 0) b−j (r)W b+i (r) (34)

accounts for departure from the ground-state through
laser absorption (first term on the right-hand side) and
for feeding of the ground-state by spontaneous emission
(second term), the combined action of which yields optical
pumping. Equation (34) shows that the optical pumping
or fluorescence rates are determined by the one-point cor-
relation tensor Ci,j(r; 0) = Ci,j(r, r). In free space, one
has Ci,j(r; 0) = δi,j so the position dependence of the flu-
orescence and optical pumping rates only arises from the
driving field profile ξ(r) (cf. Eq. (19)). On the other hand,
close to a vacuum–dielectric interface, as will be shown be-
low, one has Ci,j(r; 0) = δi,jci(z), so an additional cause
for a spatially varying optical pumping rates appears. As
already pointed out in reference [41], this phenomenon is
directly connected to the well-known space-dependence of
the damping rates of classical oscillating dipoles close to
a vacuum-dielectric interface.

First order: radiative and level shift-induced forces

To first order in ks, where the effect of the atom-field cou-
pling on the atomic motion enters into play, the ground-
state G.O.B.E.’s expansion takes the form of a Liouville
equation uncovering the force F(r) acting on the atom

O[(ks)1] :
∂W

∂t

∣∣∣∣
1

+ F(r) · ∇pW = 0. (35)

The force operator F(r) is actually the sum of three terms:

F = F(shift) + F(dip) + F(sp) (36)

where(
F(shift) + F(dip)

)
· ∇pW = − 1

2 {∇rHeff (r), ∇pW}

(37)

involves the sum of the force associated with the dielectric-
induced energy level shifts (F(shift)) and of the dipole
force (F(dip)) associated with the ground-state light-shifts
(F(shift) and F(dip) are associated with the first and sec-
ond term of equation (24), respectively), and where

F(sp) = F
(sp)
depart + F

(sp)
feed (38)

is the radiation pressure force, having two contributions
arising from each term of the right-hand side of equa-
tion (34), respectively. One finds:

F
(sp)
feed(r) · ∇pW = −i~Γ ′∞∇sA(r; 0) · ∇pW (39)
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where A(r; s) is an operator involving the field correlation
function at two points separated by s, defined as

A(r; s)W ≡ Ci,j(r; s) b−j (r + 1
2s)W b+i (r− 1

2s) (40)

and

F
(sp)
depart(r) · ∇pW =

i

4
~Γ ′∞ [∇rG(r),∇pW ] . (41)

In order to make the physical content of F
(sp)
feed more trans-

parent, let us consider the simple situation where the driv-
ing laser field is a plane wave of wavevector q, in which
case the operators b± take the simple form

b±(r) = β±0 e∓iq·r (42)

where β±0 are space-independent operators. A straightfor-
ward calculation then yields

F
(sp)
feed(r) · ∇pW = ~Γ ′∞

(
qCi,j(r; 0)− i∇sC

i,j(r; 0)
)

×β−0j · ∇pW β+
0i. (43)

Equation (43) shows that F
(sp)
feed results from two contri-

butions, the physical significance of which can be deduced
by referring to the well-known free space situation: the
first term in parentheses describes the atomic recoil ~q
due to the absorption of the driving plane wave photons,
while the second is associated with the atomic recoil dur-
ing spontaneous emission. One can thus consider that the
presence of the dielectric medium affects the quantitative

value of F
(sp)
feed through the modification of Ci,j(r; 0), but

that it remains qualitatively analogous to the free space
situation.

The situation is quite different for F
(sp)
depart. Consider-

ing equations (41) and (26), one can note that whereas in

free space, the contribution to F
(sp)
depart only arises from the

space dependence of the laser field, a supplementary con-
tribution shows up in the vicinity of a vacuum-dielectric
interface due to the space-dependence of the one-point cor-
relation tensor Ci,j(r, r). In the preceding case of a plane

wave driving field, where F
(sp)
depart reduces to zero in free

space, one obtains a purely dielectric-induced contribution
(cancelling in free space) of the form:

F
(sp)
depart · ∇pW =

i

4
~Γ ′∞∇rC

i,j(r; 0) ·
[
β+

0iβ
−
0j ,∇pW

]
.

(44)

Second order: momentum diffusion tensor

To second order in ks, we find a Fokker–Planck equation
for the Wigner matrix. Its diffusion term is given by

O[(ks)2] :
∂W

∂t

∣∣∣∣
2

= Dk,l(r)
∂2W

∂pk∂pl
·

The momentum diffusion tensor

Dk,l(r) = Dk,l
depart +Dk,l

feed (45)

again contains contributions from the departure and feed-
ing terms on the right-hand side of equation (34), respec-
tively:

Dk,l
depart

∂2W

∂pk∂pl
=
~2Γ ′∞

16

{
∂2G

∂rk∂rl
,
∂2W

∂pk∂pl

}
(46)

Dk,l
feed = −

~2Γ ′∞
2

∂2A

∂sk∂sl
(r; 0). (47)

As it is well-known [51], this tensor results from various
phenomena: randomness of atomic recoil processes due
to laser absorption and stimulated/spontaneous emission,
spatial spreading or shrinking of the atomic wavepacket
due to the space variation of the absorption or opti-
cal pumping rates. Because the dielectric medium affects
both, absorption and spontaneous emission processes, one
expects modifications of the atomic momentum diffusion
in the vicinity of the vacuum-dielectric interface.

2.3.3 Validity conditions of the derivations

To conclude this section, we summarize the validity con-
ditions for our approach. The mose stringent condition
arises from our approximation that the excited state den-
sity matrix adiabatically follows the ground state density
matrix. This means first that the atoms move little on the
scale λ– during the lifetime 1/Γ∞ of the excited state, or
equivalently:

Γ∞ �
kp

M
,
k∆p

M
· (48)

Second, the force Fe acting on the excited state must be
sufficiently small that during the lifetime 1/Γ∞, the shift
of the atomic momentum is negligible compared to the
width ∆p of the momentum distribution:

Γ∞ �
Fe

∆p
· (49)

Under typical experimental conditions (distance z ∼
1/k), the force Fe is at most of order [31] D2/ε0z

4 ∼
~kΓ∞/(kz)4 ∼ ~kΓ∞. Condition (49) hence reduces to the
semiclassical regime ∆p � ~k we shall suppose through-
out this article (cf. condition (51) below).

The elimination of the optical coherences is governed
by a different condition: the laser detuning ∆ must be
larger than any other frequency scale in the G.O.B.E. (cf.
Append. B)

|∆| � Γ∞,
DE0

~
,
kp

M
,
|∆HA|

~
· (50)

This condition implies a small saturation parameter (19)
and amounts to neglecting the Doppler shift of the laser
frequency. It also allows one to discard the dielectric-
induced shift of the atomic transition frequency compared
to the free-space detuning (see Ref. [41] for more details).
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Furthermore, since ωA � |∆| (near-resonant excita-
tion), the atomic dynamics is “frozen” at the timescale
of the vacuum field correlation time. This justifies the
Markov approximation made in deriving the G.O.B.E.
(15). We note that if the conditions (48, 50) are relaxed,
one has to take into account both the ground- and the
excited-state manifolds, with spontaneous emission induc-
ing transitions between them. This picture is reminiscent
of the dressed-state description [52] and has been used,
e.g., in references [13,19].

As pointed out in Section 2.3.2 above, the mechanical
effects of spontaneous emission may be described simply in
a semiclassical way if the atomic momentum distribution
varies smoothly on the scale of the photon momentum

∆p� ~k. (51)

Combining with condition (48), our approach is limited to
transitions with Γ∞ � ωrecoil ≡ ~k2/2M [53]. It therefore
fails for light atoms like He or Li, e.g., while it applies for
heavier atoms like Na, Ne∗, Ar∗, Rb, Cs...

3 Atomic motion at an evanescent wave
mirror

In this section, we illustrate the capabilities of the ap-
proach developed above by applying it to the motion of
an atom in an evanescent wave mirror, in the vicinity of
a vacuum–dielectric interface. We first examine the elec-
tromagnetic field correlation tensor in this geometry, with
particular emphasis on its symmetry properties. We thus
recover the well-known atomic damping rates above the
dielectric interface. The radiation pressure force and the
momentum diffusion tensor are then explicitly calculated
for a Jg = 0→ Je = 1 (scalar) atomic transition. The op-
tical pumping processes of a Jg = 1/2 atom in the evanes-
cent wave are also investigated.

3.1 Electromagnetic field above the dielectric

3.1.1 Vacuum field correlation tensor

The field correlation tensor Ci,j(r; s) in the vacuum half-
space above the dielectric has been calculated by Car-
naglia and Mandel [49]. As shown in Appendix C, this
tensor can be conveniently written as the sum of the free-
space correlation tensor and an interface-dependent part:

Ci,j = Ci,j∞ + Ci,jint. (52)

The free-space correlations are given explicitly in equa-
tion (C.19), although we may deduce most of their prop-
erties from symmetry considerations. First, due to trans-
lational invariance, Ci,j∞ (r; s) ≡ Ci,j∞ (s) is independent of
the position r and only depends on the difference vector s.
Second, due to rotational invariance, the correlation ten-
sor at the same point (i.e. s = 0) is proportional to the
Kronecker symbol δi,j . Third, for s 6= 0, the tensor may

be decomposed into an isotropic part proportional to δi,j ,
and a quadrupolar part proportional to sisj− 1

3s2δi,j . The
coefficients of this decomposition are scalar functions of s2

[42]; we give their expansion for small s in equation (C.19).
Let us now apply these symmetry arguments to the

interface-dependent part of the correlation tensor, Ci,jint.
We observe that the translational and rotational symme-
tries are broken and reduce to translations parallel to the
interface and rotations around the interface normal, re-
spectively. As a consequence, we expect Ci,jint(r1, r2) to de-
pend on the distances z1, z2 of the interface and on the in-
plane difference vector s‖ = r‖,2−r‖,1 (the ‖ subscript de-
notes the translational directions parallel to the interface
(x, y components)). More precisely, because the contribu-

tions to Ci,jint arise from the partial reflection of the field at
the vacuum–dielectric interface and the evanescent waves
present in the vicinity of the dielectric (cf. Eq. (C.20)),

Ci,jint is expected to depend only on the sum z1 + z2 of the
distances from the interface. Therefore, we may write

Ci,jint(r−
1
2s, r + 1

2s) = Ci,jint(z; s‖). (53)

As shown in Appendix C, this correlation tensor actually
contains four parts having different symmetry properties:

Ci,jint(z; s‖) =c0(z; s2
‖) δ

i,j + q0(z; s2
‖)
(
δz,iδz,j − 1

3δ
i,j
)

+ k a1(z; s2
‖)
(
δz,i sj‖ − s

i
‖ δ

z,j
)

+ k2 q2(z; s2
‖)
(
si‖ s

j
‖ −

1
2s2
‖(δ

i,j − δz,iδz,j)
)
.

(54)

The first term on the right-hand side of equation (54) pro-
vides a scalar contribution, whereas the second has the
symmetry of the Y 2

0 spherical harmonic with respect to
the interface normal (quadrupolar part). Note that these
two terms entirely account for the one-point correlation
tensor Ci,jint(z; 0), which is related to the modifications of
the natural widths of the excited state Zeeman sublevels
by the interface, as shown below. The third contribution
to equation (54), proportional to εi,j,k(s‖ × ez)k, displays
an axial symmetry. Finally, the fourth term corresponds
again to a quadrupolar part with respect to the in-plane
vector s‖. The scalar weight functions c0, q0, a1 and q2 are
given in Apppendix C (Eqs. (C.24)) and are plotted in Fig-
ure 1 for s‖ = 0 as a function of z. It clearly appears on
this figure that the influence of the interface is only signif-
icant for distances smaller than the optical wavelength λ.

As will be shown in the following, the axial part of the
field correlations is at the origin of nonstandard effects
close to the dielectric surface, so a physical interpreta-
tion of this term might be helpful. To this end, we use the
fact that the correlation tensor Ci,j(r1, r2) is proportional
to the electromagnetic field susceptibility, i.e. the electric
field Ei created at r1 by a classical dipole located at r2,
oriented along the ej axis and oscillating at the atomic
resonance frequency [29,32,39,40] (cf. also Append. C.3).
Consider now a dipole at r2 = (0, z), oscillating at the
atomic resonance frequency and oriented perpendicular



C. Henkel and J.-Y. Courtois: Atomic recoil and momentum diffusion near an interface 137
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Fig. 1. Dimensionless functions (C.24) determining the field
correlations as a function of distance z from the surface
(in units of 1/k). Lateral distance s‖ = 0, refractive index
n0 = 1.5.

x

z

r2
r1

Fig. 2. Illustration of the axial part of the correlation ten-
sor: electric field created at r1 by a dipole located at r2 and
oscillating perpendicular to the interface.

to the interface, and the field it creates at r1 = (s‖, z)
(see Fig. 2). If the dipole’s distance z is large compared to
the optical wavelength, we may use geometrical optics to
find the rays that reach the observation point r1. As far
as Ci,jint is concerned, the only ray to consider is the one
that reaches r1 after one reflection from the interface (the
thick solid line in Fig. 2). The vertical orientation of the
dipole implies that this ray must be TM -polarized. Due
to the finite distance s‖ parallel to the interface, the re-
flected field vector at r1 has a nonzero component parallel
to the interface (actually, parallel to s‖). This construction
hence illustrates how the reflection at the interface creates
a correlation between lateral and perpendicular field com-
ponents at spatially separated positions (described by the
axial part of the correlation tensor (54)). If the dipole’s
distance z is not large compared to λ–, geometrical optics
fails and one has to take into account a continuous dis-
tribution of modes that also contains evanescent waves.
However, these modes still have the common feature of
being TM -polarized and therefore also contribute to the

axial coefficient a1(z; s2
‖) of the correlation tensor (see the

Sommerfeld integral (C.24c)).

3.1.2 Connection with the damping rates of the excited
state Zeeman sublevels

As shown in reference [41], the atomic internal relaxation
processes associated with spontaneous emission close to
a vacuum-dielectric interface can be entirely described by
means of the damping rates Γ‖(z) and Γ⊥(z) of classical
oscillating dipoles located at a distance z above the di-
electric medium, polarized parallel or orthogonal to the
interface, respectively, and such that Γ‖,⊥(z →∞) = Γ∞.
More precisely, one shows that the contribution ρ̇ee,relax of
spontaneous emission to the evolution of the excited state
part of the internal atomic density matrix for an atom at
rest in r reads [41]

ρ̇ee,relax = −
1

2

{
Γ‖(z) d+

x d
−
x + Γ‖(z) d+

y d
−
y

+ Γ⊥(z) d+
z d
−
z , ρee

}
. (55)

By comparing equation (55) with equation (15), which
yields

ρ̇ee,relax = −
Γ∞

2

{
Ci,j(r, r) d+

i d
−
j , ρee

}
(56)

one can readily deduce that

c‖(z) = Cx,x(z; 0) = Cy,y(z; 0) =
Γ‖(z)

Γ∞

= 1 + c0(z; 0)− 1
3q0(z; 0) (57a)

c⊥(z) = Cz,z(z; 0) =
Γ⊥(z)

Γ∞

= 1 + c0(z; 0) + 2
3q0(z; 0). (57b)

As can be checked on the expression of c0 and q0
(Eqs. (C.24a) and (C.24b)), these results are consistent
with the well-known form of Γ‖(z) and Γ⊥(z) [28,41].

3.1.3 Evanescent driving field

We focus in this paper on an evanescent driving laser field
without polarization gradient, i.e., we consider the field
profile

ξ(r) = ξ0 exp (−κz+iQx) (58)

where Q2−κ2 = k2 and ξ0 is a constant vector. This field
is created by total internal reflection of a plane laser wave
inside the dielectric (hence, Q > k). For the two elemen-
tary polarizations TE and TM of the incident wave, we
have

ξ
(TE)
0 = ey, ξ

(TM)
0 =

iκ ex −Q ez
k

· (59)
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Note that in the TM -case, the polarization of the evanes-
cent wave is elliptic: it approaches a linear polarization in
the vicinity of the critical angle (κ → 0) and a circular
one (σ− with respect to the positive y-axis) far from the
critical angle (κ ' Q).

3.2 Jg = 0 → Je = 1 atomic transition

In this section we consider the simple situation of a scalar
atom (a Jg = 0 → Je = 1 transition) and calculate the
radiation pressure force and the momentum diffusion ten-
sor. The Wigner function of the ground state is now a
scalar, and the atomic dipole operators b±(r) (Eq. (19))
reduce to c-number functions that are simply given by the
electric field profile

b−(r) = ξ(r). (60)

The advantage of such a transition is that it provides a
good way to single out the effect of the interface on the
basic atomic external dynamics, with the minimum com-
plications introduced by the interface-modified internal
atomic dynamics.

3.2.1 Fluorescence rate

The atomic ground state reducing to a single level, the
only nontrivial feature of the optical pumping equation
(33) is the total atomic fluorescence rate Γ ′(z), that is
given by the trace of either term of the right-hand side of
equation (34). One thus finds

Γ ′(z) = Γ ′∞

(
c‖(z)|ξ0‖|

2 + c⊥(z)|ξ0⊥|
2
)
e−2κz (61)

with ξ0 = (ξ0‖, ξ0⊥). The influence of the interface on the
internal ground state dynamics hence amounts to a dif-
ferent space-dependence of the broadening of the ground
state level in addition to the one associated with the space
dependence of the driving laser field. For comparison, the
parenthesis in equation (61) is space independent in free
space and equal to |ξ0|

2. It is also interesting to note
that the fluorescence rate (61) involves the intensity of the
“transverse” (|ξ0⊥|2) and “longitudinal” (|ξ0‖|

2) parts of
the driving field independently, as a result from the rota-
tional symmetry breaking due to the interface. As a conse-
quence, the two elementary polarizations of the evanescent
wave yield different spatial variations of the fluorescence
rate:

Γ ′(TE)(z) = Γ ′∞ c‖(z) e−2κz (62a)

Γ ′(TM)(z) = Γ ′∞
κ2c‖(z) +Q2c⊥(z)

k2
e−2κz. (62b)

Hence, depending on the polarization of the driving
evanescent wave, the atomic fluorescence permits to probe
different combinations of the correlation tensor compo-
nents c‖(z) and c⊥(z).

3.2.2 Radiation pressure force

By inserting the field correlation tensor (C.19, C.23)
and the evanescent field profile (58) into the general re-
sults (39, 41), one readily finds that the departure contri-
bution (41) to the radiation pressure vanishes for a scalar
atom. After some algebra, the feeding term (39) yields the
following result for the radiation pressure force

F(sp)(r) = Γ ′(z) ~Q ex

+ 2Γ ′∞ ~k a1(z; 0) Im (ξ0‖ξ
∗
0⊥) e−2κz. (63)

The first term of the force (63) corresponds to the rule-
of-the-thumb expression for the radiation pressure: it is
the product of the fluorescence rate (61) and the photon
momentum ~Q carried by the evanescent wave along its
propagation direction. The second term arises from the
fact that the actual driving field consists of the sum of the
incoming laser evanescent wave and of the reflected part
of the field radiated by the atomic dipole. Because the ra-
diation pressure force exerted on a Jg = 0→ Je = 1 atom
is proportional to the phase-gradient of the total driving
field, it actually appears as the sum of a contribution pro-
portional to the phase gradient of the evanescent incoming
wave (first term of Eq. (63)) and of a term involving the
phase gradient of the reflected dipole field (second term
of Eq. (63)). It is therefore not surprising to find that
the reflected field contribution to the radiation pressure is
proportional to the axial coefficient a1 that, as previously
discussed, is directly connected to field reflection processes
at the interface.

For the TE and TM polarizations of the evanescent
driving field, this correction to the radiation pressure force
is difficult to observe: indeed, the vector Im (ξ0‖ξ

∗
0⊥) van-

ishes in the TE-case and is parallel to ex in the TM -case
(cf. Eq. (59)), thus modifying slightly the magnitude of
F(sp). A more prominent modification occurs for a generic
combination of TE and TM polarizations. The effect is ac-
tually maximum for a circular polarization of the evanes-
cent wave in a plane perpendicular to the interface, which
can be achieved for

ξ
(σ)
0 = ξ

(TM)
0 + iξ

(TE)
0 . (64)

The field’s polarization is then σ+ with respect to an axis
parallel to the interface (given by the “helicity” vector h =
(2Q/k)[ex − (κ/k)ey], cf. Fig. 3). The total fluorescence
rate is given by

Γ ′(σ)(z) = Γ ′∞
Q2

k2

(
c‖(z) + c⊥(z)

)
e−2κz (65)

and the reflected field contribution to the radiation pres-
sure force is found perpendicular to the helicity h, yielding

F(sp)(z) = ~QΓ ′(σ)(z)ex

− 2~QΓ ′∞ a1(z; 0) e−2κz
(κ
k

ex + ey
)
. (66)

Thus, the radiation pressure force forms a nonzero, z -
dependent angle with the evanescent wave propagation
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F1 (propagation vector)

F2 h (helicity)F

Poynting vector
x

y

Fig. 3. Illustration of the radiation pressure force in a circu-
larly polarized evanescent wave. F1: usual radiation pressure
(parallel to driving field’s propagation vector); F2: correction
due to partial field reflection at the dielectric surface; F: full
force. The helicity vector h of the circular polarization and the
Poynting vector of the evanescent wave (using the standard
definition) are also shown.
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Fig. 4. Direction of the radiation pressure force in a circularly
polarized evanescent wave, as a function of distance from the
dielectric. The curve shows the angle between the actual force
and the evanescent wave’s propagation vector (the vectors F
and F1 of Fig. 3). For these parameters, the field’s Poynting
vector forms an angle of −45◦ with the propagation vector
F1. The inset gives the magnitude of the force, using either
the exact result (66) (full line) or ignoring both the increased
fluorescence rate and the force correction F2 (dashed line).
Parameters: refractive index n0 = 1.5, evanescent driving field
with κ = k, Q =

√
2 k. The force is plotted is units of ~kΓ ′∞,

as a function of kz.

vector Q ex. This is represented in Figure 4 where the an-
gle and magnitude of the radiation pressure force (66) are
plotted as a function of the distance z from the dielectric
surface.

We finally note that a related effect was discussed by
Roosen and Imbert [44]: these authors pointed out that
the Poynting vector of an evanescent wave is not parallel
to its propagation vector if the wave is circularly polarized.
If one assumes the radiation pressure force to be parallel
to the Poynting vector of the driving field, which seems
tempting because the Poynting vector represents the local
momentum of the field, one thus finds a result reminding
of (66). In fact, it is well-known that this assumption is not
correct, as can be readily checked on the simple example
of a Jg = 0→ Je = 1 atom interacting in free space with
two plane waves

ξ(r) = eikxez + eikyex (67)

leading to a Poynting vector

Π ∝ ex + ey − cos [k(x− y)] ez (68)

whereas the radiation pressure force is clearly oriented
along ex+ey. This problem can be readily solved by notic-
ing that the Poynting vectorΠ is only defined up to a curl,
as shown by the continuity equation

∇ ·Π + ∂tε = 0 (69)

where ε is the electromagnetic energy density. It is thus
straightforward to show that it is always possible to define
a “novel” Poynting vector satisfying the continuity equa-
tion and being parallel to the radiation pressure force.

3.2.3 Momentum diffusion tensor

The momentum diffusion tensor can be readily obtained
from equation (45) using the field correlations (C.19, C.23)
and replacing the dipole operators b±(r) by the evanes-
cent field profile according to equation (58). One thus finds

Dk,l(z) =
~2

8

∂2Γ ′(z)

∂z2
δk,zδl,z −

~2Γ ′∞
2

∂2A

∂sk∂sl
(z; 0) (70)

where

A(z; s) = Ci,j(z; s) ξ∗0i ξ0j exp(−2κz + iQ s · ex) (71)

We now discuss the physical significance of equation (70)
in more details, with an emphasis on the influence of the
interface on momentum diffusion. We start by considering
the first term on the right-hand side of equation (70), that

corresponds to Dk,l
depart (see Eq. (46)). In order to single

out the interface contribution, it is convenient to write the
total fluorescence rate in the form

Γ ′(z) = Γ ′∞ |ξ0|
2
e−2κz + Γ ′int(z) (72)

yielding two contributions to Dz,z
depart

Dz,z
depart(z) =

~2κ2Γ ′∞ |ξ0|
2

2
e−2κz +

~2

8

∂2Γ ′int(z)

∂z2
· (73)

The first term on the right-hand side of equation (73)
does not involve any surface-induced effects (apart from
the existence of the evanescent driving field) and is as-
sociated with the shrinking of the atomic spatial coher-
ence (hence a broadening in momentum space) due to the
non-uniform, exponential photon absorption probability.
This corresponds to the intuitive fact that the coherence
of an atomic wavepacket incident on an evanescent wave
mirror will be destroyed more efficiently by absorption-
spontaneous emission cycles close to the interface than
far away as a result of the inhomogeneous laser inten-
sity. The second term of equation (73) is a correction to
Dz,z
depart arising from the modification of the fluorescence

rate by the interface, that is responsible for an additional
spatial modulation of the photon absorption probability,
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hence an additional cause for momentum diffusion. As is
well-known, the dipole damping rates Γ‖(z) and Γ⊥(z)
display an exponential dependence close to the interface,
and then tend toward their asymptotic value Γ∞ with
some damped oscillations [41]. Γ ′int(z), and consequently
Dz,z
depart, are therefore expected to exhibit the same kind

of behaviour (see Eqs. (61) and (73)).
Consider now the second term on the right-hand side

of equation (70), corresponding to Dk,l
feed (see Eq. (47)).

Again, the influence of the interface can be sorted out by
expressing A in the form

A(z; s) = A∞(z; s) +Aint(z; s‖) (74)

A∞(z; s) = Ci,j∞ (s) ξ∗0i ξ0j exp(−2κz + iQ s · ex) (75)

Aint(z; s‖) = Ci,jint(z; s‖) ξ
∗
0i ξ0j exp(−2κz + iQ s · ex).

(76)

BecauseA∞ only involves the free-space correlation tensor
Ci,j∞ , its contribution to Dk,l

feed is analogous to that usually
encountered in free space for any driving laser field, i.e., it
accounts for the random walk of the atoms in momentum
space due to their recoil during spontaneous emission of
photons, the spontaneous emission diagram being assumed
as in free space. The contribution of Aint to momentum
diffusion, involving the complex nonlocal correlations be-
tween the vacuum field components induced by the inter-
face, exhibits an interesting feature. Because Aint is inde-
pendent of the z-component of the relative position s (be-

cause such is Ci,jint), the interface-induced modifications of
momentum diffusion due to changes in spontaneous emis-
sion in the vicinity of the dielectric medium will only take
place parallel to the interface, a result that is not obvi-
ous when considering the important modifications of the
spontaneous emission diagrams due to the interface [41].

Quantitative results for the momentum diffusion ten-
sor are displayed in Figures 5, 6. In Figure 5 is plotted the
trace of the diffusion tensor

D(z) =
∑
i

Di,i(z) (77)

that permits to estimate the total width ∆p of the atomic
momentum distribution: for a spatially constant diffusion
coefficient,

∆p2 ' 2Dt (78)

which may be generalized to

∆p2 ' 2

∫
dtD[〈z(t)〉] (79)

where 〈z(t)〉 is the mean atomic trajectory in the evanes-
cent field’s dipole potential. Equation (79) is valid pro-
vided the momentum diffusion is sufficiently small so
that individual atomic trajectories remain close to the
mean path, an assumption that may become question-
able depending on the experimental conditions. The in-
tegral (79) may be estimated from the typical timescale
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Fig. 5. Momentum diffusion coefficient for a scalar atom
driven by a TE (a) and a TM (b) polarized evanescent wave.
Thick solid line: trace D(z) (77) of the diffusion tensor; dashed
line: lateral diffusion coefficient D‖(z) = Dxx(z)+Dyy(z); dot-
ted line: diffusion coefficient Dzz(z) perpendicular to the inter-
face; thin solid line: trace D(z) of the diffusion tensor in free
space (both the modified vacuum correlations and the curva-
ture of the driving field are neglected). Parameters: same as
Figure 4. The diffusion coefficient is plotted in units of ~2k2Γ ′∞,
as a function of kz.

τ ' 2M/κpz,inc for the reflection [54,55] (−pz,inc: inci-
dent atomic momentum along z) and the position z0 of the
turning point of the mean path: ∆p2 ' 2τD(z0). The dif-
fusion coefficients plotted in Figure 5 may thus be viewed
as the squared momentum width of the reflected atoms,
given the interaction time and varying the distance z = z0

of the turning point.
From Figure 5, we observe that the atomic momen-

tum diffusion perpendicular to the surface (the coefficient
Dz,z represented by the dotted curve) is, on its own, com-
parable to the diffusion in free space (the thin solid curve,
neglecting the curvature of the exponential fluorescence
rate and the modified vacuum correlations). This may
be compared with Figure 6 where the evanescent driv-
ing field has a large decay length 1/κ (total internal re-
flection close to the critical angle). The exponential field
profile is then essentially constant and the perpendicular
momentum diffusion decreases. In this direction, the mo-
mentum diffusion coefficient Dz,z is now determined, on
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Fig. 6. Same as Figure 5, but for an evanescent driving field
with larger decay length: κ = 0.1 k, Q ≈ 1.005 k.

the one hand, by the spontaneous photons’ recoil, Dz,z
feed,

and, on the other hand, by the derivatives of the fluores-
cence rates Γ‖,⊥(z) that enter into Dz,z

depart (73). Also, for
the long-range evanescent wave, the TE and TM polar-
izations produce a similar momentum diffusion since they
both correspond to a (nearly) linearly polarized driving
field.

In conclusion, we observe that the momentum diffusion
tensor is systematically larger close to the dielectric sur-
face compared to free space (the thin solid lines in Figs. 5,
6), by a factor of about three to four. Translating the
width of the atomic momentum distribution into a coher-
ence length, we see that close to the surface, spontaneous
emission destroys the atomic coherence more efficiently
than expected from free-space considerations. This may
have been expected from the enhanced fluorescence rates
Γ‖,⊥(z) compared to Γ∞, as well as from the spatial sub-
wavelength structure of both the evanescent field and the
vacuum field correlations. Finally, we note that this diffu-
sion tensor also translates into an increased temperature
limit for radiative atom traps in the vicinity of surfaces
[19–25].

3.3 Jg = 1/2 atom

In this section, we turn to a second application of the the-
ory developed in Section 2 and focus on the optical pump-
ing processes taking place in atoms having a nontrivial
Zeeman sublevel structure in their ground state. By con-
sidering the simple case of a Jg = 1/2 atom, we show that
these processes are modified both quantitatively and qual-
itatively in the vicinity of the dielectric interface: since the
fluorescence rates depend on both the atom-interface dis-
tance and the atomic dipole orientation, the optical pump-
ing rates are modified. More strikingly, a net ground-state
magnetization is predicted to occur in a linearly polarized
driving field if the atomic recoil is taken into account. We
illustrate this effect by an explicit calculation of the radi-
ation pressure force.

3.3.1 Atomic magnetization variables

In the case of a Jg = 1/2 atom, the Wigner function
W (r,p) takes the form of a hermitian 2×2 matrix describ-
ing the populations and Zeeman coherences of the ground
state. It is convenient to represent this matrix using the
vector σ = (σx, σy, σz) of Pauli matrices

W = 1
2 (w + σ · J) . (80)

With this definition, the scalar function w(r,p) describes
the phase-space distribution of the total population,
whereas the real vector J(r,p) (analogous to the Bloch
vector for a two-level atom) gives the phase-space distribu-
tion of the atomic magnetization: for unpolarized atoms,
one has J ≡ 0, while for an ensemble of atoms prepared
in the sublevel | + 1/2〉z, Jz(r,p) = w(r,p) and Jx,y ≡ 0
(|·〉z refers to quantization along the z axis). The evolution
equations for the total population and the magnetization
vector are obtained from the G.O.B.E. by taking the ap-
propriate traces:

w(r,p) = TrW (r,p), (81a)

J(r,p) = Tr [σW (r,p)]. (81b)

We next need the action of the reduced dipole operators
b±(r) on the Wigner matrix. From the Clebsch–Gordan
coefficients for the Jg = 1/2→ Je = Jg, Jg+1 transitions,
one finds

b−(r) = β ξ(r) + iασ × ξ(r), (82)

Je = 1/2 : β = 1/3, α = −1/3,
Je = 3/2 : β = 2/3, α = 1/3;

(83)

while b+(r) is given by the hermitian conjugate. The first
term β ξ(r) in equation (82) is similar to the reduced
dipole operator for a scalar atom (it is parallel to the
driving field’s polarization vector ξ(r)); the second term
iασ × ξ(r) accounts for couplings between the ground-
state Zeeman sublevels, and therefore describes specific
multilevel effects such as Raman couplings [56].
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3.3.2 Internal dynamics

As in the scalar atom situation, we start our analysis by
considering the classical optical pumping equation (33) ac-
counting for the internal atomic dynamics. In the Jg = 1/2
case, two quantities characterize the internal atomic dy-
namics: the ground state light shifts (Eq. (24)) and the op-
tical pumping rates (Eq. (34)) (we do not consider in this
section the energy level shifts induced by the interface).
We discuss in some detail the case of a circularly polarized
evanescent wave and calculate the pumping rate.

General

Let us first write down the light-shift Hamiltonian (24)
(also a hermitian 2× 2 matrix):

Heff = ~∆′ e−2κz b+
0 · ξ0

= ~∆′ e−2κz (β|ξ0|
2 + αh · σ) (84a)

h = Im ξ∗0 × ξ0 (84b)

where b±0 is given by equation (82), replacing ξ(r) with ξ0,
and where the h vector corresponds to the helicity of the
driving field. Following Cohen-Tannoudji and Dupont-Roc
[57], one may interpret the second term of the light-shift
operator (84) in terms of a fictitious magnetic field parallel
to the helicity h. This interpretation is supported by the
equation of motion for the atomic magnetization vector J:
it is obtained using equation (34) for the Wigner matrix
W that takes the following form

Ẇrelax

∣∣∣
0

= Γ ′∞ e
−2κz Ci,i(z; 0)

×
(
b−0iWb+0i −

1
2{b

+
0ib
−
0i, W}

)
. (85)

After some straightforward algebra with the Pauli ma-
trices, we find from the light-shift Hamiltonian (84) and
equation (85) the following equation of motion

∂J

∂t

∣∣∣∣
0

=2α∆′e−2κz h× J + 2α2Γ ′∞ e
−2κz C(z)h

− 2α2Γ ′∞ e−2κz
(

(TrF) C(z)J + (Tr C(z))FJ
)

+ 2Γ ′∞ e
−2κz

(
α2{C(z), F}J− αβ[C(z), F ]J

)
.

(86a)

We have used the following tensors

(C(z))i,j = Ci,j(z; 0) =

 c‖(z) 0 0
0 c‖(z) 0
0 0 c⊥(z)


x,y,z

(86b)

(F)i,j = Re ξ∗0iξ0j . (86c)

Since the total population w = TrW is conserved by op-
tical pumping, we have put w = 1 in equation (86a).

In the equation of motion (86a), one identifies the pre-
cession of the magnetization vector J around the effec-
tive magnetic field vector h (the first term) and the feed-
ing of the magnetization J through optical pumping (the

second term). The third and fourth terms describe the
damping of the atomic magnetization through absorption-
spontaneous emission cycles. The effect of the dielectric
interface is encoded in the (diagonal) tensor C(z) whose
elements are proportional to the dipole damping rates
Γ‖ and Γ⊥ (see Eq. (57)). It is interesting to note from
equation (86) that optical pumping creates a magnetiza-
tion aligned parallel to the vector C(z)h that is gener-
ally not parallel to the helicity h as a consequence of the
anisotropic fluorescence rates. For the pumping process
close to the dielectric interface, the one-point correlation
tensor C(z) hence plays the role of an (anisotropic) “effec-
tive magnetic susceptibility”, linking the induced atomic
magnetization to the effective magnetic field.

Discussion of elementary polarizations

According to the light-shift operator (84a) and the equa-
tion of motion (86a), the optical pumping process is char-
acterized by the helicity vector h of the driving field. For
the elementary polarizations of the evanescent wave, it
becomes

TE polarization: h(TE) = 0 (87a)

TM polarization: h(TM) = −(2κQ/k2)ey. (87b)

We also mention for later use the case of a circularly po-
larized evanescent wave. As discussed at the end of Sec-
tion 3.2.2, the field’s polarization vector is given by equa-
tion (64) and one has

circular polarization: h(σ)=(2Q/k)[ex − (κ/k)ey]. (87c)

In the TE case, the helicity vanishes and hence no net
magnetization builds up. The light-shifts for the two
ground state Zeeman sublevels being identical (for the
same reason), one would expect this case to yield a sit-
uation similar to the scalar atom of Subsection 3.2. We
shall see, however, that this is no longer true when the
atomic recoil is taken into account (cf. Sect. 3.3.3).

In the cases of TM and circular polarization, the helic-
ity is nonzero and optical pumping leads to a net atomic
magnetization. In steady state, it aligns parallel to the y-
axis in the TM case, and parallel to an axis in the xy-plane
for a circularly polarized evanescent wave. In both cases,
the light-shift operator is diagonal with respect to these
axes, and the anisotropic magnetic susceptibility does not
come into play. (This would be the case for a different
relative phase between the TE and TM polarizations in
Eq. (64), giving the helicity vector a nonzero component
hz.)

Example: circular polarization

It is convenient to introduce a rotated coordinate system
with the ex′ unit vector being parallel to the helicity (87c).
Choosing this as the quantization axis diagonalizes in fact
the light-shift operator (84). From the magnetization’s
evolution equation (86), it may also be verified that the
components Jy′ , Jz decouple from Jx′ . If we assume that
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the atoms are initially unpolarized, the pumping process
only depends on Jx′ whose evolution is given by

∂Jx′

∂t
= Γp(z)[1− Jx′ ] (88a)

where the “optical pumping rate” equals

Γp(z) = 4α2Q
2

k2
Γ ′∞e

−2κzc‖(z). (88b)

The significance of this equation becomes evident if we
write down the evolution of the populations w± ≡

1
2 (1±

Jx′) of the Zeeman sublevels |±1/2〉x′ with respect to the
quantization axis. The following rate equations are easily
found

∂w+

∂t
= Γp(z)w−,

∂w−

∂t
= −Γp(z)w− (89)

and we see that the pumping rate Γp(z) governs the tran-
sition | − 1/2〉x′ → | + 1/2〉x′ between the Zeeman sub-
levels. In this transition, the atom absorbs a σ+ polar-
ized photon (with respect to the x′ axis) from the driving
field and spontaneously emits a π polarized photon (cf.
Fig. 7b). The reverse transition is impossible since the
driving field’s polarization is purely σ+. From this elemen-
tary picture, we may understand why the optical pumping
rate (88b) involves the coefficient c‖ from the vacuum cor-
relation tensor: the spontaneous π photon has in fact an
electric field parallel to the x′ axis, and its emission rate
is proportional to the strength of the vacuum fluctuations
polarized along this axis, hence proportional to the ele-
ment Cx

′,x′ = c‖ of the correlation tensor.
The rate equations (89) show that in steady-state, the

atoms are completely magnetized along the helicity vec-
tor of the driving field (the x′ axis). With respect to op-
tical pumping in free space, the only difference is hence
the nonzero angle between this vector and the evanescent
wave’s propagation vector Qex.

A more detailed investigation of the pumping process
may be done in the transient regime where the interaction
time τ is smaller than the pumping time 1/Γp. This regime
is in fact typical for atomic mirror experiments where one
seeks to avoid spontaneous emission because it reduces
the coherence of the reflection. An approximate solution
of equation (88) in the transient regime is (for initially
unpolarized atoms)

Γpτ � 1 : Jx′ = w+ − w−
' Γp(z0)τ

' 4α2Q
2

k2
Γ ′∞e

−2κz0c‖(z0)τ. (90)

The population difference now depends on the coefficient
c‖(z0) at roughly the distance of closest approach z0. The
estimate (90) is actually very crude, since it neglects the
fact that the sublevels | ± 1/2〉x′ are subject to differ-
ent light shift potentials in the circular polarization case.
This leads to a different potential (and, ultimately, ki-
netic) energy after the sublevel change – a feature that

π σ

(a) TE polarization

πσ

(b) circular polarization

πσ σ

(c) TM polarization

Fig. 7. Illustration of the fluorescence cycles for a J = 1/2→
Je = 3/2 atom driven by (a) a linearly polarized field (TE
polarization); (b) a circularly polarized field (combination of
TE and TM polarization); (c) a TM polarized field (elliptic
polarization). For clarity, only the fluorescence cycles starting
from the sublevel |−1/2〉 are shown. Note that these sublevels
are defined with respect to a quantization axis that, in case
(b), differs from cases (a) and (c).

has been studied already for both spontaneous [13,15,
16] and stimulated [58–60] transitions between sublevels.
In order to describe both the center-of-mass motion and
the anisotropic vacuum correlations, one may use the full
Fokker–Planck equation derived in Section 2. An exam-
ple of the corresponding “recoil-induced magnetizations”
is given in the next subsection.

Summarizing, if atomic recoil is neglected, the internal
dynamics close to the dielectric is subject to the following
modifications as compared to free space: the optical pump-
ing rates increase and differ according to the polarization
of the spontaneous photon emitted in the pumping cycle.
In a circularly polarized, evanescent driving field, a net
atomic magnetization builds up that does not align paral-
lel to the field propagation vector for two reasons: first, the
magnetization is determined by the field helicity that is
not parallel to its wave vector, and second, atomic magne-
tization and field helicity are connected by an anisotropic
effective susceptibility because of the anisotropic fluores-
cence rates.

3.3.3 External dynamics: recoil-induced magnetization

We now consider the G.O.B.E. accounting for the atomic
recoils during absorption and emission of photons. Among
the huge diversity of non standard effects expected in the
external dynamics of multilevel atoms in the vicinity of a
vacuum-dielectric interface, that could not be addressed
in a single paper, we focus here on radiation pressure and
show that this force may induce a net magnetization of
the atomic ground state for certain classes of the atomic
velocity in a situation where the classical optical Bloch



144 The European Physical Journal D

equations would predict a zero result (linearly polarized
driving field).

Radiation pressure force

Consider the situation of a Jg = 1/2 atom driven by
a TE polarized evanescent wave. Using the general ex-
pressions (39, 41) for the radiation pressure force, after a
straightforward calculation using the Pauli matrices, one

finds that the departure contribution F
(sp)
depart (41) van-

ishes, whereas the feeding contribution F
(sp)
feed (39) is a sum

of two terms analogous to the ones encountered for the
scalar atom (Eq. (63)). The first of these contributions,

F
(sp)
(1) , corresponds to the product of the fluorescence rate

and the evanescent field phase gradient. This force is hence
parallel to the evanescent wave propagation vector Qex.
We find that this term does not couple the population w
and the magnetization components J. The second contri-

bution to the radiation pressure operator (39), F
(sp)
(2) , is

associated with the gradient of the field emitted by the
atomic dipole and backreflected towards the atom by the
dielectric interface, and involves the axial part of the field
correlation tensor. This contribution, that vanished for a
TE polarization and a Jg = 0 → Je = 1 atom, takes a
nonzero value in the present situation and gives rise to a
magnetization-population coupling. We interpret this cou-
pling in terms of generalized rate equations for the Zeeman
sublevel phase-space distributions.

To be more explicit, the contribution F
(sp)
(1) to the ra-

diation pressure force appears in the following way in the
Liouville equation for the magnetization component Ji (cf.
Eqs. (35), (81b)):

Tr {σi F
(sp)
(1) (r) · ∇pW} = F

(sp)
(1) (r;Ji) · ∇pJi. (91)

It is characteristic for the force F
(sp)
(1) that on the rhs only

Ji appears. A similar result holds for the total population
w. The following expressions are found (the z-dependence
of c‖, c⊥ has been suppressed for clarity):

F
(sp)
(1) (r;w) = F(sp,1)

[
β2c‖ + α2(c‖ + c⊥)

]
(92a)

F
(sp)
(1) (r;Jx) = F(sp,1)

[
β2c‖ − α

2(c‖ − c⊥)
]

(92b)

F
(sp)
(1) (r;Jy) = F(sp,1)

[
β2c‖ − α

2(c‖ + c⊥)
]

(92c)

F
(sp)
(1) (r;Jz) = F(sp,1)

[
β2c‖ + α2(c‖ − c⊥)

]
(92d)

F(sp,1) = Γ ′∞ e
−2κz~Qex. (92e)

Note that the effect of the radiation pressure force (92) dif-
fers between the magnetization components. This feature
is interpreted below using the rate equations (95) where
we show that the radiation pressure depends on whether
or not a fluorescence cycle leads to a sublevel change. In
any case, the contribution (92) to the radiation pressure is
parallel to the propagation vector Qex of the evanescent

wave. We also observe that the effect of the force (92a) on
the population w is proportional to the total fluorescence
rate Γ ′(TE)(z):

F
(sp)
(1) (r;w) = ~QexΓ

′(TE)(z)

= ~Qex (Γ ′π(z) + Γ ′σ(z)) (93a)

Γ ′π(z) = β2Γ ′∞e
−2κzc‖(z) (93b)

Γ ′σ(z) = 2α2Γ ′∞e
−2κz 1

2 (c‖(z) + c⊥(z)). (93c)

The notations Γ ′π and Γ ′σ refer to a quantization axis cho-
sen along the y axis (cf. Fig. 7a): with respect to this axis,
the (linearly polarized) driving field excites a π transition
and Γ ′π gives the fluorescence rate for spontaneous photons
with π polarization (electric field parallel to the y axis).
As discussed in the example of a circular driving field, this
rate is proportional to the coefficient c‖. We observe that
the fluorescence rate Γ ′σ for σ polarized photons is propor-
tional to 1

2 (c‖+ c⊥), these photons having an electric field
in the xz plane.

The contribution F
(sp)
(2) to the radiation pressure op-

erator (39), in contrast to equation (92), mixes the pop-
ulation w and the magnetization J. More precisely, the
Liouville equations for w, Jx and Jy contain the following
terms proportional to the axial coefficient a1 of the field
correlation tensor:

Tr {F(sp)
(2) (r) · ∇pW} = f (sp,2)

[
αβ

∂Jx

∂py
− α2 ∂Jy

∂px

]
(94a)

Tr {σx(F
(sp)
(2) (r) · ∇pW )} = −αβf (sp,2) ∂w

∂py
(94b)

Tr {σy(F
(sp)
(2) (r) · ∇pW )} = α2f (sp,2) ∂w

∂px
(94c)

f (sp,2) = 2Γ ′∞ e
−2κz~ka1(z; 0). (94d)

The Jz magnetization component is not coupled to
{w, Jx, Jy} in this case.

Rate equations

In order to make the physical content of the Liouville equa-
tions (92, 94) more transparent, we again consider initially
unpolarized atoms and suppose that their momentum dis-
tribution is uniform in the y direction (perpendicular to
the evanescent wave’s propagation vector). In these condi-
tions, it is possible to neglect terms involving the deriva-
tives ∂/∂py in equation (94). The coupled Liouville equa-
tions then transform into a pair of rate equations involving
only the sublevel populations w± = 1

2 (w±Jy) with respect
to the y-axis:(
∂t|0+1 +

p

M
· ∇r

)
w± + γ±→∓(z)w± − γ∓→±(z)w∓

+ F±→±(z) · ∇pw± + F∓→±(z) · ∇pw∓ = 0. (95a)

The different quantities in these equations are easily found
by comparison between the Bloch (86a) and the Liouville
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equations (92, 94):

γ±→∓(z) = Γ ′σ(z) (95b)

F±→±(z) = 2β∆′ e−2κz~κez + Γ ′π(z)~Qex (95c)

F∓→±(z) = Γ ′σ(z)~Qex ∓ α
2f (sp,2)ex. (95d)

The significance of these results is clear. The γ±→∓(z)
are the transition rates for a sublevel change | ± 1/2〉y →
|∓1/2〉y; both transitions take place at the rate Γ ′σ(z), the
fluorescence rate for σ± polarized spontaneous photons
(cf. Eq. (93) and Fig. 7a).

The forces F±→±(z) are the sum of the dipole force
(the first term in Eq. (95c)) and the radiation pressure
force due to fluorescence cycles where the atoms fall back
to the same initial sublevel (the second term). Since the
driving field is linearly polarized, this force is proportional
to the fluorescence rate Γ ′π(z) for π polarized photons (cf.
Fig. 7a).

Finally, the forces F∓→± are radiation pressure forces
due to sublevel-changing fluorescence cycles | ∓ 1/2〉y →
| ± 1/2〉y. They differ in two respects from the previous
force. First, their mean value (averaged over the sublevels)
is proportional to the emission rate Γ ′σ(z) for σ± polar-
ized photons. Second and more striking, the forces (95d)
are not the same for the transitions |+ 1/2〉y → |− 1/2〉y
and | − 1/2〉y → | + 1/2〉y, their difference being propor-
tional to the weight function a1(z; 0) for the axial part of
the field correlation tensor (cf. Eq. (94d)). To understand
this result, we recall that for a scalar atom, the axial part
comes into play when the atom, driven by a circularly
polarized field, emits circularly polarized photons. More
precisely, the photons must be polarized in a plane per-
pendicular to the interface (the y′z plane in the example
studied in the preceding paragraph). If this is the case,
the axial correlation tensor results in a force in the po-
larization plane and parallel to the interface, with a sign
depending on the helicity of the spontaneous photon (see
Fig. 3). We encounter here a similar effect for a Jg = 1/2
atom: even in a linearly polarized driving field, the spon-
taneous photon’s polarization is indeed circular as soon
as the atom changes sublevel. Consider for example the
transition | − 1/2〉y → |+ 1/2〉y shown in Figure 7a. The
spontaneous photon is σ− polarized and since the quan-
tization axis is the y axis, its electric field lies in the xz
plane. The emission of this photon hence gives rise to a
force correction parallel to ex. On the other hand, the re-
verse transition | + 1/2〉y → | − 1/2〉y is associated with
a σ+ polarized photon and a force correction of opposite
sign.

Experimental signature

As a consequence of the difference between the radia-
tion pressure forces F∓→±(z), the atomic Zeeman sub-
levels absorb different momenta per optical pumping time.
Their distributions hence separate in momentum space.
But since the sublevels have been exchanged in the pump-
ing cycle, the sublevel momentum distributions w±(px)
merge again after a second pumping cycle. The process is

- +

+ -

- +

px

t

Fig. 8. Illustration of “recoil-induced magnetization” in a TE
polarized evanescent wave. The momentum distributions for
the sublevels | ± 1/2〉y (denoted by “+” and “−”) are shifted
by the radiation pressure forces F±. Due to the difference in
recoil momentum per pumping cycle, the sublevel distributions
separate and merge periodically at the optical pumping rate.
The dashed line shows the net magnetization Jy(px) as a func-
tion of the momentum component px parallel to the evanescent
wave’s propagation vector.

then repeated periodically in time, as shown schematically
in Figure 8. The maximum sublevel separation in momen-
tum space is of the order of a few photon momenta

max δp '
F′+→− − F−→+

Γ ′σ
= −4~kex

a1(z; 0)

c‖(z) + c⊥(z)
·

(96)

We note that in the transient regime, this phenomenon
may be observed experimentally using similar techniques
as for atomic diffraction experiments at normal inci-
dence [61]. For longer interaction times, one could think
of pump-probe Raman spectroscopy [62] to detect the
Zeeman sublevel imbalance as a function of the veloc-
ity px/M : equation (94c) indeed predicts a magnetization
w+ − w− ≡ Jy proportional to the derivative ∂w/∂px of
the atomic momentum distribution (“recoil-induced mag-
netization”). Note that the periodic separation of the
sublevels might be difficult to observe because their mo-
mentum distributions are also broadened by spontaneous
emission (momentum diffusion).

4 Conclusion

We have formulated a theoretical framework to describe
the motion of an atom that is fluorescing in an environ-
ment with modified electromagnetic field modes. We pro-
vided expressions for the radiation pressure force and the
momentum diffusion tensor in the limits of low, but semi-
classical velocites and low saturation. This general theory
applies to atoms with arbitrary Zeeman sublevel structure
and environments with arbitrary electromagnetic field cor-
relations. One important result is that the internal and
external (center-of-mass) dynamics of the atoms is deter-
mined by the two-point correlation tensor of the vacuum
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field around the atomic position. We then made explicit
predictions for simple atoms (Jg = 0, 1/2) in the vicinity
of a flat dielectric surface. These results allow precise esti-
mates of the effects of spontaneous emission when atoms
are either reflected from an evanescent wave mirror [15,16,
18] or trapped in a two-dimensional waveguide-like field
configuration in the vicinity of a surface [19–25].

Even for a scalar atom (Jg = 0 ground state), the
radiation pressure force exhibits quantitative and quali-
tative changes with respect to free space. It is increased
both due to the subwavelength structure of the evanes-
cent driving field and the modified vacuum correlations.
In particular, the radiation pressure is no longer paral-
lel to the phase gradient of the driving field due to the
partial reflection at the dielectric interface. The optical
pumping of a Jg = 1/2 atom in an evanescent wave shows
similar modifications. The atomic magnetization vector is
related to the field’s helicity in an anisotropic manner, and
even a linearly polarized field gives rise to an imbalance of
the atomic sublevel populations in velocity space (“recoil-
induced magnetization”). The sublevel-selective detection
of atoms reflected from an evanescent wave mirror is thus
a sensitive probe of the electromagnetic field in the simple
half-cavity realized by the vacuum–dielectric interface.

The present work might be pursued in two directions:
first, one could further explore the properties of radia-
tion pressure in evanescent waves and consider situations
beyond the simple models studied in this paper. Let us
mention some topics of particular interest: angular mo-
menta Jg ≥ 1 because such atoms are actually used in ex-
periments; the coupling between Zeeman sublevel popula-
tions and coherences for more complex field polarizations
(TM , circular); and the momentum diffusion for Zeeman-
degenerate atoms [63]. One may expect that the combi-
nation of relaxation processes and the center-of-mass mo-
tion in different light-shift potentials leads to a variety of
motion-induced magnetizations, similar to the case of con-
servative couplings explored in reflection beam-splitters
[58] and diffraction gratings [59,60]. A second direction
opens up if one considers different geometries: cold atoms
trapped in high-quality cavities, e.g., are currently receiv-
ing much interest in the fields of cavity QED and nonlinear
quantum optics. The generalized optical Bloch equations
derived in Section 2 can be used in their present form
to study atomic motion in the semiclassical regime and
also provide a starting point to formulate full quantum-
mechanical simulation schemes. Finally, the theory may
be generalized to describe more complex phenomena as,
e.g., the absorption and transmission of a probe field or
the influence of the atoms on the cavity properties.

We are indebted to A. Aspect, P. Grangier, J.-J. Greffet,
A. Landragin, Klaus Mølmer, C.I. Westbrook, M. Wilkens,
and V. Yakovlev for useful remarks and discussions. C.H.
gratefully acknowledges support from Laboratoire de Physique
des Lasers (Université de Paris-Nord Villetaneuse), Labora-
toire d’Énergétique Moléculaire et Macroscopique, Combustion
(École Centrale Paris) and the Deutsche Forschungsgemein-
schaft.

Appendix A: Derivation of the G.O.B.E. (15)

We outline here the derivation of the quantum-mechanical
master equation (15). The only difference to the usual
treatments [29] is the quantization of the atomic center-
of-mass motion, i.e., we take care of the ordering of the
atomic position and momentum operators R,P. We only
present the case without an external driving field, since
this field may be easily accounted for by adding a com-
mutator with the interaction Hamiltonian VAL (3) to the
master equation of the reduced density matrix. We also as-
sume that the electromagnetic field is at zero temperature
(in the vacuum state), as is usual for optical frequencies.

In the interaction representation (with respect to the
free atomic Hamiltonian H0 plus the free vacuum field
Hamiltonian HR), the evolution of the full atom + reser-
voir density matrix ρAR is given by

ρ̇AR =
1

i~
[VAR(t), ρAR] (A.1)

with the atom-field interaction given by the electric dipole
interaction

VAR(t) = −Dd(t) ·E(R, t). (A.2)

Here, D(t) = Dd(t) is the atomic dipole operator and
E(r, t) the electric field operator in the Heisenberg picture
(these operators evolve in time according to the Hamilto-
nian H0 +HR). Anticipating the approximation of slowly
moving atoms, we neglect in equation (A.2) the time-
dependence of the position operator R due to H0 (free
flight).

To solve equation (A.1) in second-order perturbation
theory, we first re-write it as an integral equation:

ρAR(t+∆t) = ρAR(t) +
1

i~

t+∆t∫
t

dτ [VAR(τ), ρAR(τ)] .

(A.3)

This equation is iterated by inserting a similar expression
for ρAR(τ) under the integral sign. Taking then the trace
over the vacuum field variables, one obtains the master
equation for the reduced atomic density matrix ρ. As usual
in perturbation theory, the second-order term in VAR is
simplified by factorizing the full density matrix according
to ρAR(τ) = ρ(τ) ⊗ ρvac. The resulting master equation
reads in the position representation

See equation (A.4) next page

For brevity, we did not write out the vacuum state for the

field expectation value 〈0|E(+)
i (r1, τ

′)E
(−)
j (r2, τ)|0〉 where

E(±)(r, t) are the positive and negative frequency compo-
nents of the field operator.

We now insert the free evolution of the atomic dipole
operator for a two-manifold system

d(τ) = d−e−iωA(τ−t) + d+eiωA(τ−t), (A.5)
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〈r1|ρ(t+∆t)|r2〉 = 〈r1|ρ(t)|r2〉+
D2

~2

t+∆t∫
t

dτ ′
τ ′∫
t

dτ
∑

i,j=x,y,z

{
− 〈E(+)

i (r1, τ
′)E

(−)
j (r1, τ )〉 di(τ

′)dj(τ )〈r1|ρ(τ )|r2〉

− 〈E(+)
i (r2, τ )E

(−)
j (r2, τ

′)〉 〈r1|ρ(τ )|r2〉di(τ )dj(τ
′) + 〈E(+)

i (r2, τ )E
(−)
j (r1, τ

′)〉 dj(τ
′)〈r1|ρ(τ )|r2〉di(τ )

+ 〈E(+)
i (r2, τ

′)E
(−)
j (r1, τ )〉 dj(τ )〈r1|ρ(τ )|r2〉di(τ

′)
}
. (A.4)

where d± are the dipole raising and lowering operators
in the Schrödinger picture at time t. We observe that
the correlation time of the vacuum field fluctuations is
much shorter than the timescale ∆t for the evolution of
the atomic density matrix. This implies that we may com-
pute the time integrals in equation (A.4) in the usual way
[48]: replace τ by t in the argument of the density ma-
trix and take the latter outside the integral; change to
the integration variable τ ′ − τ and replace its border ∆t
by infinity; discard terms oscillating at twice the optical
frequency; identify the Fourier transform of the two-time
vacuum field correlations at the atomic frequency:

Ei,j(r1, r2) =

∞∫
−∞

d(τ ′ − τ)

× 〈E(+)
i (r1, τ

′)E
(−)
j (r2, τ)〉eiωA(τ ′−τ).

(A.6)

The remaining time integral then turns out to be propor-
tional to ∆t, and after some term rearrangements, one
obtains the following form for the master equation (sum-
mation over repeated indices is understood)

〈r1|
ρ(t+∆t)− ρ(t)

∆t
|r2〉

= −
D2

2~2
〈r1|
{
Ei,j(R,R)d+

i d
−
j , ρ(t)

}
|r2〉

+
D2

~2
Ei,j(r2, r1)d−j 〈r1|ρ(t)|r2〉d

+
i

+
1

i~
〈r1| [(HA(R)−H0), ρ(t)] |r2〉 (A.7)

We may identify the lhs of this equation with the time
derivative 〈r1|ρ̇|r2〉 since the reduced density matrix
evolves slowly on the time scale of the vacuum fluctua-
tions.

We finally recall that the correlation function (A.6) is
identical, up to a normalization, to the field correlation
tensor defined in equation (17): (D2/~2)Ei,j = Γ∞C

i,j .
The first two lines of equation (A.7) are then readily
identified with the relaxation part ρ̇relax of the G.O.B.E.
(15). Furthermore, the last line of equation (A.7) contains
the level shifts (Lamb-shifts) due to the coupling to the
reservoir. These shifts contain both the renormalization
of the atomic Hamiltonian, HA,∞−H0, and the interface-
dependent part ∆HA(R) appearing in equation (8). For
simplicity, we do not write down their explicit expressions
and refer to reference [41] for a discussion of the atomic
level shifts in the vicinity of a vacuum–dielectric interface.

Appendix B: Adiabatic elimination
of the optical coherences and the excited
state population

In this appendix, we analyze in detail the validity con-
ditions for the adiabatic elimination of the optical coher-
ences and the excited state density matrix.

B.1 Optical coherences

The atoms are driven by a laser field that we describe by
a monochromatic classical field

EL(r, t) = EL(r)e−iωLt + c.c. (B.1)

The interaction Hamiltonian (3) becomes, in the rotating
wave approximation,

VAL = −D
(
d+ · EL(r)e−iωLt + d− · E∗L(r)eiωLt

)
= −DE0

(
d+ · ξ(r)e−iωLt + d− · ξ∗(r)eiωLt

)
(B.2)

where the dimensionless vector ξ(r) for the field profile
(Eq. (20)) has been used. The time-dependence of the in-
teraction Hamiltonian is removed by passing into the “ro-
tating frame”, i.e., we write the optical coherence in the
form

ρeg = e−iωLtρ̃eg. (B.3)

The equation of motion for ρ̃eg is now readily obtained
from the Bloch equations (6, 7, 8, 15) and reads(
d

dt
− i∆+

Γ∞

2
Ge(R)

)
ρ̃eg

=
1

i~

[
Pe∆HA(R)Peρ̃eg − ρ̃egPg∆HA(R)Pg

]

+
1

i~

[
P2

2M
, ρ̃eg

]
+
iDE0
~

(
[d+ · ξ(R)]σ − ρee[d

+ · ξ(R)]
)
.

(B.4)

The ordering of the terms takes into account that R is
the atomic position operator. We have also introduced the
abbreviation

Ge(R) ≡ Ci,j(R,R)d+
i d
−
j . (B.5)
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ρ̇ee +
Γ∞

2

{
Ge(R), ρee

}
=

1

i~

[
P2

2M
, ρee

]
+

1

i~

[
Pe∆HA(R)Pe − ~∆

s0

2
[d+ · ξ(R)][d− · ξ∗(R)], ρee

]
+
Γ∞

2

s0

2

{
Ge(R), [d+ · ξ(R)]σ[d− · ξ∗(R)]

}
−
Γ∞

2

s0

2

(
[d+ · ξ(R)][d− · ξ∗(R)]ρeeGe(R) + Ge(R)ρee[d

+ · ξ(R)][d− · ξ∗(R)]
)
. (B.8)

Equation (B.4) may be approximately solved if the detun-
ing ∆ is outweighing all the other frequencies. We there-
fore assume that the atoms are driven off-resonantly and
at low saturation, |∆| � Γ∞,DE0/~, |∆HA/~|, as in con-
dition (50). The frequency associated with the kinetic en-
ergy operator may be estimated in the Wigner representa-
tion (cf. Eq. (35)). If we assume that the atomic position
distribution varies at most on the scale of the optical wave-
length, this term is overestimated by the Doppler shift
kp/M . In this way, we find the third condition appearing
in (50), |∆| � kp/M .

Given these conditions, the adiabatic solution to equa-
tion (B.4), correct to first order in Γ∞/∆, reads

ρ̃eg ' −
DE0
~∆

(
1− i

Γ∞

2∆
Ge(R)

)
×
(

[d+ · ξ(R)]σ − ρee[d
+ · ξ(R)]

)
. (B.6)

Note that the optical coherence ρ̃ge is equal to the hermi-
tian conjugate of (B.6). We shall see in the next paragraph
that the excited state density matrix ρee is much smaller
than the ground state density matrix σ (Eq. (B.12)). We
may therefore neglect the former in equation (B.6). Using
the definition (19) of the reduced dipole operator b−(R)
and recalling that the projection operator

∑
i d

+
i d
−
i = Pe

acts as the identity onto the excited state manifold, one
sees that equation (B.6) yields the expression (27) for the
optical coherences.

B.2 Excited state

The generalized optical Bloch equation for the excited
state density matrix ρee reads

ρ̇ee +
Γ∞

2

{
Ge(R), ρee

}
=

1

i~

[
P2

2M
+ Pe∆HA(R)Pe, ρee

]
+
iDE0

~

(
[d+ · ξ(R)]ρ̃ge − ρ̃eg[d

− · ξ∗(R)]
)
. (B.7)

Inserting the adiabatic solution (B.6) for the optical co-
herences, one obtains

See equation (B.8) above

We have used the saturation parameter s0 defined in equa-
tion (22).

To solve this equation approximately, we observe that
the last term on the rhs is small compared to the term
involving Γ∞ on the lhs, because of the low saturation
limit s0 � 1 (condition (50)). We also want to neglect the
first two lines on the rhs (the kinetic and potential energy
operators in the commutator). We noted above that the
kinetic energy corresponds to a rate smaller than roughly
the Doppler shift. It is hence negligible if condition (48),
Γ∞ � kp/M , holds. We note that this condition may be
re-written as

1

Γ∞

p

M
� λ– (B.9)

i.e., the atoms move much less than a wavelength during
the lifetime of the excited state. To estimate the potential
energy term, we again use the Wigner representation and
find (cf. Eq. (35)) that it is of the order of the force Fe
acting on the excited state divided by the width ∆p of
the atomic momentum distribution. We therefore need to
suppose Γ∞ � Fe/∆p (cf. Eq. (48)) or

Fe

Γ∞
� ∆p. (B.10)

The momentum the atoms gain during the excited state’s
lifetime is hence negligible compared to the width of the
momentum distribution.

Given these conditions, we are left with the equation

{
Ge(R), ρee −

s0

2
[d+ · ξ(R)]σ[d− · ξ∗(R)]

}
' 0. (B.11)

Using the fact that the spontaneous emission rates are
positive for any polarization of the spontaneous photon,
it is easy to prove that the solution to (B.11) is given by

ρee '
s0

2
[d+ · ξ(R)]σ[d− · ξ∗(R)]. (B.12)

This expression shows that the excited state density ma-
trix is much smaller than that of the ground state, by
a factor of the order of the saturation parameter s0. In
the position representation, equation (B.12) yields the re-
sult (28).
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B.3 Ground state

The Bloch equation for the ground state density matrix σ
reads in the position representation

〈r1|σ̇|r2〉 =
1

i~
〈r1|

[
P2

2M
+ Pg∆HA(R)Pg, σ

]
|r2〉

+
iDE0
~

(
[d− · ξ∗(r1)]〈r1|ρ̃eg|r2〉 − 〈r1|ρ̃ge|r2〉[d

+ · ξ(r2)]
)

+Γ∞C
i,j(r2, r1)d−j 〈r1|ρee|r2〉. (B.13)

We now insert the adiabatic expressions (B.6, B.12) for the
optical coherences ρ̃eg and the excited state density matrix
ρee. The last line of equation (B.13) readily yields the last
line of the optical pumping equation (23). In the second
line, involving the optical coherences, we neglect terms of
order s2

0 and obtain the following two contributions

1

i~
〈r1|

[
Hls(R), σ

]
|r2〉 −

Γ ′∞
2
〈r1|
{
G(R), σ

}
|r2〉. (B.14)

The commutator is due to the real part of the optical
coherences (B.6) (in phase with the driving field) and is
characterized by the light-shift Hamiltonian

Hls(R) = ~∆
s0

2
[d− · ξ∗(R)][d+ · ξ(R)]

= ~∆′[d− · ξ∗(R)][d+ · ξ(R)]. (B.15)

This Hamiltonian adds to the level shift Pg∆HA(R)Pg
in equation (B.13) to give the effective ground-state
Hamiltonian Heff (R) (24). The anticommutator in equa-
tion (B.14) is due to the imaginary part of the optical
coherences ρ̃eg (phase lag of order Γ∞/∆). It involves the
ground-state operator G(R) defined in equation (26):

Γ ′∞
2
G(R) =

Γ ′∞
2
Ci,j(R,R)b−i (R)b−j (R)

=
Γ∞

2

s0

2
[d− · ξ∗(R)]Ge(R)[d+ · ξ(R)]. (B.16)

We have thus obtained the optical pumping equation (23).

Appendix C: Field correlations
for the vacuum–dielectric interface

In this appendix, we outline the calculation of the electro-
magnetic field correlation tensor for the vacuum–dielectric
interface, following Carnaglia and Mandel [49]. We assume
that the dielectric fills the half-space z < 0 and is charac-
terized by the (real) refractive index n0.

C.1 Field modes

Carnaglia and Mandel distinguish two types of electro-
magnetic field modes for this geometry:

(a) modes incident from inside the dielectric and be-
ing partially or totally reflected at the dielectric–vacuum

interface. In the vacuum half-space, these modes are ei-
ther propagating or evanescent, depending on the inter-
nal angle of incidence. The wavevector of the incident
wave in the dielectric is denoted k0↑, and the vacuum
wavevector of the transmitted wave k↑. Obviously, one
has |k0↑| = n0(ω/c) ≡ n0k and |k↑| = k. The wavevectors
are decomposed according to k↑ = (k‖, kz) where k‖ de-
notes the components parallel to the interface plane (the
xy-plane) and kz the perpendicular component. The par-
allel components of k0↑ and k↑ coincide: k0‖ = k‖. The
perpendicular components are such that in the dielectric,
k0z > 0; in vacuum, kz is chosen such that kz > 0 for
the propagating modes and Im kz > 0 for the evanes-
cent waves. For later convenience, we introduce the ab-
breviation u ≡ |k‖|/k. Modes propagating (evanescent) in
vacuum then correspond to 0 ≤ u ≤ 1 (1 < u < n0),
respectively.

We write f↑(k0↑, µ; r) (µ = TE, TM) for the corre-
sponding mode function that is normalized to unit (in-
cident) amplitude in the dielectric. In the vacuum half-
space, these modes have an amplitude equal to the Fresnel
transmission coefficient denoted by t(u, µ). Explicitly, one
has (z > 0):

f↑(k0, µ; r) = e↑(u, ϕ, µ)t(u, µ) exp (ik↑ · r), (C.1)

with k↑ = k(u cosϕ, u sinϕ, v), (C.2)

(0 ≤ u ≤ n0),

v =
√

1− u2, (C.3)

e↑(u, ϕ, TE) = (− sinϕ, cosϕ, 0), (C.4)

e↑(u, ϕ, TM) = (v cosϕ, v sinϕ,−u), (C.5)

t(u, TE) =
2
√
n2

0 − u
2

v +
√
n2

0 − u
2
, (C.6)

t(u, TM) =
2n2

0

√
n2

0 − u
2

n2
0v +

√
n2

0 − u
2
· (C.7)

Note that the TM polarization vector (C.5) is complex
for evanescent modes (u > 1).

(b) modes propagating downwards from the upper
half-space into the dielectric with wavevectors k↓ =
(k‖,−kz) in vacuum and k0↓ = (k‖,−k0z) in the dielec-
tric. In the vacuum half-space, these modes contain a part

reflected from the interface with wavevector k
(r)
↓ = k↑. We

note f↓(k↓, µ; r) the corresponding mode function (nor-
malized to unit incident amplitude in vacuum) and r(u, µ)
the Fresnel amplitude reflection coefficient (z > 0):

f↓(k, µ; r) = exp (ik‖ · r‖)(e↓(u, ϕ, µ) e−ikzz

+ e
(r)
↓ (u, ϕ, µ) r(u, µ)eikzz), (C.8)
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with

k↓ = k (u cosϕ, u sinϕ,−v) , (C.9)

(0 ≤ u ≤ 1),

e↓(u, ϕ, TE) = (− sinϕ, cosϕ, 0) (C.10)

= e
(r)
↓ (u, ϕ, TE) = e↑(u, ϕ, TE)

e↓(u, ϕ, TM) = (v cosϕ, v sinϕ, u) (C.11)

e
(r)
↓ (u, ϕ, TM) = (−v cosϕ,−v sinϕ, u) (C.12)

= −e↑(u, ϕ, TM)

r(u, TE) =
v −

√
n2

0 − u
2

v +
√
n2

0 − u
2

(C.13)

r(u, TM) =
n2

0v −
√
n2

0 − u
2

n2
0v +

√
n2

0 − u
2
· (C.14)

For a detailed discussion of the orthonormalization of
these field modes, cf. reference [49].

C.2 Vacuum field correlation function

Upon quantization, the electric field operator in the vac-
uum half-space may be written as a sum over the two types
of modes introduced above, the mode functions being mul-
tiplied by the usual creation and annihilation operators
[49,64]. Using the bosonic commutation rules, Carnaglia
and Mandel obtain the following result for the vacuum
correlation tensor (z1, z2 > 0):

〈0|E(+)
i (r1, τ)E

(−)
j (r2, 0)|0〉

=

∫
>

d3k0↑

(2π)3

~ω
2n2

0ε0

∑
µ

f↑i(k0↑, µ; r1)f∗↑j(k0↑, µ; r2) e−iωτ

+

∫
<

d3k↓

(2π)3

~ω
2ε0

∑
µ

f↓i(k↓, µ; r1)f∗↓j(k↓, µ; r2) e−iωτ .

(C.15)

The signs “>, <” on the integral signs are to remind that
the wavevectors k0↑ and k↓ only run through a half-space.

From expression (C.15), we may readily read off the
Fourier transform Ei,j(r1, r2) of the correlation tensor de-
fined in equation (A.6), by using as integration variables
the frequency ω and the polar coordinates u, ϕ of the
in-plane vector k‖/k. After some algebra, one obtains
the following representation of the normalized correlation

tensor (17):

Ci,j(r1, r2)

=
3

8π

n0∫
0

du u√
n2

0 − u
2

2π∫
0

dϕ
∑
µ

f↑i(k0↑, µ; r1)f∗↑j(k0↑, µ; r2)

+
3

8π

1∫
0

du u
√

1− u2

2π∫
0

dϕ
∑
µ

f↓i(k↓, µ; r1)f∗↓j(k↓, µ; r2)

(C.16)

(From here on, the wavevectors k↑,↓ have magnitude
|k↑,↓| = ω0/c = k where ω0 is the atomic transition fre-
quency). In the following, we show that the correlation
function (C.16) may be written as a sum of two parts,
C = C∞ + Cint, one corresponding to the free-space cor-
relation function, and the other one representing the in-
fluence of the interface.

C.2.1 Free-space part

The free-space correlation function is obtained from those
upward propagating modes that are homogeneous plane
waves above the dielectric, on the one hand, and from
either the incident or the reflected parts of the downward
propagating modes, on the other. These contributions may
be combined using the following property of the Fresnel
coefficients

u < 1 :

√
1− u2

n2
0 − u

2
t2(u, µ) + r2(u, µ) = 1 (C.17)

that follows from the relation r = −r′ where r′ is the
reflection coefficient for upward propagating modes (reci-
procity), and energy conservation. One finally gets the re-
sult

Ci,j∞ (r1, r2) =
3

8π

1∫
0

du

2π∫
0

dϕ
u

√
1− u2

×
∑
µ

(
e↑i(u, ϕ, µ)e∗↑j(u, ϕ, µ)eikz(z1−z2)

+ e↓i(u, ϕ, µ)e∗↓j(u, ϕ, µ)e−ikz(z1−z2)
)

× exp[ik‖ · (r‖,1 − r‖,2)].
(C.18)

If the integral is written in terms of the unit vector n =
k/k, one recovers the familiar expression for the free-space
vacuum correlation tensor that appears in equation (18).

Due to translational invariance of the vacuum field,
the free-space correlation tensor only depends on the dif-
ference vector s ≡ r2 − r1. From rotational invariance, it
follows that the tensor may be decomposed into a scalar
part, proportional to the unit tensor, and a quadrupolar
part with zero trace, proportional to sisj − 1

3s
2δi,j . More
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Ci,jint(r1, r2) =
3

8π

n0∫
1

du

2π∫
0

dϕ
u√

n2
0 − u

2

∑
µ

e↑i(u, ϕ, µ)e∗↑j(u, ϕ, µ)|t(u, µ)|2 exp[ik‖ · (r‖,1 − r‖,2) + ikz(z1 + z2)]

+
3

8π

1∫
0

du

2π∫
0

dϕ
u

√
1− u2

∑
µ

(
e↓i(u, ϕ, µ)e

(r)∗
↓j (u, ϕ, µ)r∗(u, µ) e−ikz(z1+z2)

+ e
(r)
↓i (u, ϕ, µ)e∗↓j(u, ϕ, µ)r(u, µ) eikz(z1+z2)

)
exp[ik‖ · (r‖,1 − r‖,2)] (C.20)

explicitly, the correlation tensor may be written for two
neighboring points

Ci,j∞ (s) = Ci,j∞,0(s) + Ci,j∞,2(s)

≈
(
1− 7

30k
2s2
)
δi,j − 1

10k
2
(
sisj − 1

3s2δi,j
)
.

(C.19)

We have limited ourselves to second order in ks, which is
sufficient to compute the radiation pressure force and the
momentum diffusion tensor since the latter involve at most
a second derivative of the correlation tensor (cf. Eqs. (39,
41, 45)).

C.2.2 Interface contribution

The interface-dependent part Ci,jint of the field correla-
tions is due to two contributions: the evanescent modes
f↑(k0↑, µ; r) (Eq. (C.1) with 1 < u < n0), and the crossed
term between waves incident from above and reflected at
the interface (the two terms of f↓(k↓, µ; r) in Eq. (C.8)).
Collecting these contributions, one has

See equation (C.20) above

(Recall that Im kz > 0 in the first integral and kz > 0
in the second.) It is now evident that the interface con-
tribution only depends on the in-plane difference vector
s‖ = r‖,2 − r‖,1 and the sum of the distances z1 + z2.
We perform the integration over the azimuthal angle ϕ
with the help of the following formula [65] and its deriva-
tives with respect to ks‖

2π∫
0

dϕ e−iks‖u cosϕ = 2πJ0(ks‖u) (C.21)

where J0 is the Bessel function of zeroth order. We also
observe the following property of the Fresnel coefficients

n0 > u > 1 :

√
u2 − 1

n2
0 − u

2
|t(u, µ)|2 = 2 Im r(u, µ) (C.22)

that allows one to combine the contributions of reflected
and evanescent modes in a compact way. Finally, the cor-
relation tensor is decomposed into its isotropic, axial and

quadrupolar parts, according to

Ci,jint(z; s‖) = Ci,jint(r−
1
2s, r + 1

2s)

= Ci,jint,0(z; s‖) + Ci,jint,1(z; s‖) + Ci,jint,2(z; s‖)

(C.23a)

Ci,jint,0(z; s‖) = c0(z; s2
‖)δ

i,j (C.23b)

Ci,jint,1(z; s‖) = ka1(z; s2
‖)
(
δz,isj‖ − s

i
‖δ
z,j
)

(C.23c)

Ci,jint,2(z; s‖) = q0(z; s2
‖)
(
δi,zδj,z − 1

3δ
i,j
)

+ k2q2(z; s2
‖)
(
si‖s

j
‖ −

1
2s2
‖(δ

i,j − δi,zδj,z)
)
.

(C.23d)

In these expressions, the dimensionless weight functions
c0, q0, a1, q2 are given by the Sommerfield integrals

c0(z; s2
‖) =

1

2
Re

∫ n0

0

du u

v
J0(ks‖u)

× (rTE + (2u2 − 1)rTM ) exp 2ikzv (C.24a)

q0(z; s2
‖) =

3

4
Re

∫ n0

0

du u

v
J0(ks‖u)

× (−rTE + (u2 + 1)rTM ) exp 2ikzv (C.24b)

a1(z; s2
‖) =

3

2
Im

∫ n0

0

du u2 J1(ks‖u)

ks‖
rTM exp 2ikzv

(C.24c)

q2(z; 0) =
3

2
Re

∫ n0

0

du u

v

J2(ks‖u)

(ks‖)2

× (rTE − (u2 − 1)rTM ) exp 2ikzv. (C.24d)

These integrals are computed numerically and are plotted
as a function of kz in Figure 1 for s‖ = 0. The refractive
index is n0 = 1.5.

C.3 Relation to field susceptibility

As a final comment, we would like to display the link be-
tween the vacuum correlation tensor on the one hand, and



152 The European Physical Journal D

the classical field susceptibility, on the other. The latter
quantity gives the (positive-frequency) electric field cre-
ated at position r1 by an oscillating dipole located at r2:

Ei(r1)e−iωt = Gi,j(r1, r2)Dje
−iωt. (C.25)

The tensor Gi,j may be calculated from classical electro-
dynamics [66–68]. For the vacuum–dielectric interface, we
have checked the following relation to the vacuum corre-
lation tensor (A.6)

Ei,j(r1, r2) = 2~ ImGi,j(r1, r2). (C.26)

This result shows that, at least for zero temperature and a
two-level system, both the spontaneous emission rates and
the associated forces may be calculated from a classical
field calculation alone, without explicitly quantizing the
field. In particular, equation (C.26) justifies our interpre-
tation of the radiation pressure force in terms of a classical
picture where the atomic dipole interacts with its own ra-
diation reaction field reflected from the vacuum–dielectric
interface.
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2. T.W. Hänsch, A.L. Schawlow, Opt. Commun. 13, 68

(1975).
3. R.J. Cook, Phys. Rev. A 22, 1078 (1980).
4. J.P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980).
5. J. Dalibard, C. Cohen-Tannoudji, J. Phys. B 18, 1661

(1985).
6. C. Adams, M. Siegel, J. Mlynek, Phys. Rep. 240, 143

(1994).
7. T. Pfau et al., Phys. Rev. Lett. 73, 1223 (1994).
8. R.J. Cook, R.K. Hill, Opt. Commun. 43, 258 (1982).
9. V.I. Balykin, V.S. Letokhov, Y.B. Ovchinnikov, A.I.

Sidorov, Pis’ma Zh. Eksp. Teor. Fiz. 45, 282 (1987) [JETP
Lett. 45, 353–356 (1987)].

10. M.A. Kasevich, D.S. Weiss, S. Chu, Opt. Lett. 15, 607
(1990).

11. C.G. Aminoff et al., Phys. Rev. Lett. 71, 3083 (1993).
12. A. Aspect, C. Henkel, G. Labeyrie, A. Landragin, in Co-

herent and Collective Interactions of Particles and Radi-
ation Beams (Proceedings of the International School of
Physics “Enrico Fermi”, Course CXXXI, Varenna 1995),
edited by A. Aspect, W. Barletta, and R. Bonifacio (IOS
Press, Amsterdam, 1996), pp. 551–574.

13. W. Seifert et al., Phys. Rev. A 49, 3814 (1994).
14. M. Christ et al., Opt. Commun. 107, 211 (1994).
15. Y.B. Ovchinnikov, D.V. Laryushin, V.I. Balykin, V.S.

Lethokhov, Pis’ma Zh. Eksp. Teor. Fiz. 62, 102 (1995)
[JETP Lett. 62, 113–118 (1995)].

16. P. Desbiolles, M. Arndt, P. Szriftgiser, J. Dalibard, Phys.
Rev. A 54, 4292 (1996).

17. A. Landragin et al., Phys. Rev. Lett. 77, 1464 (1996).
18. W. Power, T. Pfau, M. Wilkens, Opt. Commun. 143, 125

(1997).
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